Advertisement

Anti-heterotic Computing

  • Viv KendonEmail author
Chapter
Part of the Emergence, Complexity and Computation book series (ECC, volume 35)

Abstract

When two or more different computational components are combined to produce computational power greater than the sum of the parts, this has been called heterotic computing (Stepney et al in 8th workshop on quantum physics and logic (QPL 2011), vol 95, pp 263–273, 2012 [46, EPTCS 95 263]). An example is measurement based quantum computing, in which a set of entangled qubits are measured in turn, with the measurement outcomes fed forward by a simple classical computer, to keep track of the parity of the measurement outcomes on each qubit. The parts are no more powerful than a classical computer, while the combination provides universal quantum computation. Most practical physical computers are hybrids of several different types of computational components, but not all are heterotic. In fact, anti-heterotic, in which the whole is less than the sum of the parts, is the most awkward case to deal with. This occurs commonly in experiments on new unconventional computational substrates. The classical controls in such experiments are almost always conventional classical computers with computational power far out-stripping the samples of materials being tested. Care must be exercised to avoid accidentally carrying out all of the computation in the controlling classical computer. In this overview, existing tools to analyse hybrid computational systems are summarised, and directions for future development identified.

Notes

Acknowledgements

VK funded by the UK Engineering and Physical Sciences Research Council Grant EP/L022303/1. VK thanks Susan Stepney for many stimulating and productive hours of discussions on these subjects and diverse other topics. And for the accompanying stilton scones.

References

  1. 1.
    Adamatzky, A.: Physarum machines: encapsulating reaction-diffusion to compute spanning tree. Naturwissenschaften 94(12), 975–980 (2007)CrossRefGoogle Scholar
  2. 2.
    Amos, M.: Theoretical and Experimental DNA Computation. Springer, Berlin (2005)zbMATHGoogle Scholar
  3. 3.
    Anders, J., Browne, D.: Computational power of correlations. Phys. Rev. Lett. 102, 050502 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Anders, J., Oi, D.K.L., Kashefi, E., Browne, D.E., Andersson, E.: Ancilla-driven universal quantum computation. Phys. Rev. A 82(2), 020301 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Banach, R., Poppleton, M.: Retrenchment: an engineering variation on refinement. In: 2nd International B Conference. LNCS, vol. 1393, pp. 129–147. Springer (1998)Google Scholar
  6. 6.
    Banach, R., Jeske, C., Fraser, S., Cross, R., Poppleton, M., Stepney, S., King, S.: Approaching the formal design and development of complex systems: the retrenchment position. In: WSCS, IEEE ICECCS’04 (2004)Google Scholar
  7. 7.
    Banach, R., Jeske, C., Poppleton, M., Stepney, S.: Retrenching the purse. Fundam. Informaticae 77, 29–69 (2007)Google Scholar
  8. 8.
    Banach, R., Poppleton, M., Jeske, C., Stepney, S.: Engineering and theoretical underpinnings of retrenchment. Sci. Comput. Program. 67(2–3), 301–329 (2007)Google Scholar
  9. 9.
    Bartlett, S., Sanders, B., Braunstein, S.L., Nemoto, K.: Efficient classical simulation of continuous variable quantum information processes. Phys. Rev. Lett. 88, 097904 (2002)CrossRefGoogle Scholar
  10. 10.
    Bechmann, M., Sebald, A., Stepney, S.: From binary to continuous gates—and back again. In: ICES 2010, 335–347 (2010)Google Scholar
  11. 11.
    Bechmann, M., Sebald, A., Stepney, S.: Boolean logic-gate design principles in unconventional computers: an NMR case study. Int. J. Unconv. Comput. 8(2), 139–159 (2013)Google Scholar
  12. 12.
    Ben-Or, M., Crepeau, C., Gottesman, D., Hassidim, A., Smith, A.: Secure multiparty quantum computation with (only) a strict honest majority. In: 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pp. 249–260 (2006).  https://doi.org/10.1109/FOCS.2006.68
  13. 13.
    Blakey, E.: Unconventional complexity measures for unconventional computers. Nat. Comput. 10, 1245–1259 (2010).  https://doi.org/10.1007/s11047-010-9226-9MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Braunstein, S.L., Caves, C.M., Jozsa, R., Linden, N., Popescu, S., Schack, R.: Separability of very noisy mixed states and implications for nmr quantum computing. Phys. Rev. Lett. 83, 1054–1057 (1999).  https://doi.org/10.1103/PhysRevLett.83.1054CrossRefGoogle Scholar
  15. 15.
    Brown, K.L., De, S., Kendon, V., Munro, W.J.: Ancilla-based quantum simulation. New J. Phys. 13, 095007 (2011)CrossRefGoogle Scholar
  16. 16.
    Brown, K.L., Horsman, C., Kendon, V.M., Munro, W.J.: Layer by layer generation of cluster states. Phys. Rev. A 85, 052305 (2012)CrossRefGoogle Scholar
  17. 17.
    Browne, D., Kashefi, E., Perdrix, S.: Computational depth complexity of measurement-based quantum computa tion. In: van Dam, W., Kendon, V.M., Severini S. (eds.) TQC 2010. LNCS, vol 6519, pp. 35–46. Springer (2010)Google Scholar
  18. 18.
    Clark, J.A., Stepney, S., Chivers, H.: Breaking the model: finalisation and a taxonomy of security attacks. ENTCS 137(2), 225–242 (2005)Google Scholar
  19. 19.
    Coecke, B., Kissinger, A.: Picturing Quantum Processes—A First Course in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, UK (2017). ISBN 9781107104228Google Scholar
  20. 20.
    Cooper, D., Stepney, S., Woodcock, J.: Derivation of Z refinement proof rules: forwards and backwards rules incorporating input/output refinement. Technical Report YCS-2002-347, Department of Computer Science, University of York (2002)Google Scholar
  21. 21.
    Cory, D.G., Laflamme, R., Knill, E., Viola, L., Havel, T.F., Boulant, N., Boutis, G., Fortunato, E., Lloyd, S., Martinez, R., Negrevergne, C., Pravia, M., Sharf, Y., Teklemariam, G., Weinstein, Y.S., Zurek, W.H.: NMR based quantum information processing: achievements and prospects. Fortschritte der Phys. 48(9–11), 875–907 (2000)Google Scholar
  22. 22.
    Cory, D.G., Fahmy, A.F., Havel, T.F.: Ensemble quantum computing by NMR spectroscopy. Proc. Natl. Acad. Sci. 94(5), 1634–1639 (1997).  https://doi.org/10.1073/pnas.94.5.1634CrossRefGoogle Scholar
  23. 23.
    Dale, M., Miller, J.F., Stepney, S., Trefzer, M.A.: A substrate-independent framework to characterise reservoir computers (2018). CoRR arXiv:1810.07135
  24. 24.
    Feynman, R.P.: Simulating physics with computers. Intern. J. Theoret. Phys. 21(6/7), 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275(5298), 350–356 (1997).  https://doi.org/10.1126/science.275.5298.350MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Graca, D.S.: Some recent developments on Shannon’s GPAC. Math. Log. Q. 50(4–5), 473–485 (2004)CrossRefGoogle Scholar
  27. 27.
    Horsman, C., Brown, K.L., Munro, W.J., Kendon, V.M.: Reduce, reuse, recycle for robust cluster-state generation. Phys. Rev. A 83(4), 042327 (2011).  https://doi.org/10.1103/PhysRevA.83.042327CrossRefGoogle Scholar
  28. 28.
    Horsman, C., Stepney, S., Wagner, R.C., Kendon, V.: When does a physical system compute? Proc. R. Soc. A 470(2169), 20140182 (2014)CrossRefGoogle Scholar
  29. 29.
    Horsman, D., Kendon, V., Stepney, S., Young, P.: Abstraction and representation in living organisms: when does a biological system compute? In: Dodig-Crnkovic, G., Giovagnoli R. (eds.) Representation and Reality: Humans, Animals, and Machines, vol. 28, pp. 91–116. Springer (2017)Google Scholar
  30. 30.
    Horsman, D., Kendon, V., Stepney, S.: Abstraction/representation theory and the natural science of computation. In: Cuffaro, M.E., Fletcher, S.C. (eds.) Physical Perspectives on Computation, Computational Perspectives on Physics, pp. 127–149. Cambridge University Press, Cambridge (2018)CrossRefGoogle Scholar
  31. 31.
    Horsman, D., Clarke, T., Stepney, S., Kendon, V.: When does a control system compute? The case of the centrifugal governor (2019). In preparationGoogle Scholar
  32. 32.
    Jones, J.A.: Quantum computing with NMR. Prog. Nucl. Magn. Reson. Spectrosc. 59, 91–120 (2011)CrossRefGoogle Scholar
  33. 33.
    Jozsa, R.: An introduction to measurement based quantum computation (2005). arXiv:quant-ph/0508124
  34. 34.
    Kendon, V., Sebald, A., Stepney, S., Bechmann, M., Hines, P., Wagner, R.C.: Heterotic computing. In: Unconventional Computation. LNCS, vol. 6714, pp. 113–124. Springer (2011)Google Scholar
  35. 35.
    Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46–52 (2001).  https://doi.org/10.1038/35051009CrossRefGoogle Scholar
  36. 36.
    Kuhnert, L., Agladze, K., Krinsky, V.: Image processing using light-sensitive chemical waves. Nature 337, 244–247 (1989)CrossRefGoogle Scholar
  37. 37.
    Lloyd, S., Braunstein, S.L.: Quantum computation over continuous variables. Phys. Rev. Lett. 82, 1784 (1999)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Mills, J.W.: The nature of the extended analog computer. Phys. D Nonlinear Phenom. 237(9), 1235–1256 (2008).  https://doi.org/10.1016/j.physd.2008.03.041MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Motoike, I.N., Adamatzky, A.: Three-valued logic gates in reaction-diffusion excitable media. Chaos Solitons Fractals 24(1), 107–114 (2005)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)CrossRefGoogle Scholar
  41. 41.
    Roselló-Merino, M., Bechmann, M., Sebald, A., Stepney, S.: Classical computing in nuclear magnetic resonance. Int. J. Unconv. Comput. 6(3–4), 163–195 (2010)Google Scholar
  42. 42.
    Russell, B., Stepney, S.: The geometry of speed limiting resources in physical models of computation. Int. J. Found. Comput. Sci. 28(04), 321–333 (2017).  https://doi.org/10.1142/S0129054117500204MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Spiller, T.P., Munro, W.J., Barrett, S.D., Kok, P.: An introduction to quantum information processing: applications and realisations. Contemp. Phys. 46, 407 (2005)CrossRefGoogle Scholar
  44. 44.
    Stepney, S.: The neglected pillar of material computation. Phys. D Nonlinear Phenom. 237(9), 1157–1164 (2008)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Stepney, S., Abramsky, S., Bechmann, M., Gorecki, J., Kendon, V., Naughton, T.J., Perez-Jimenez, M.J., Romero-Campero, F.J., Sebald, A.: Heterotic computing examples with optics, bacteria, and chemicals. In: 11th International Conference on Unconventional Computation and Natural Computation 2012 (UCNC 2012), Oréans, France. Lecture Notes in Computer Science, vol. 7445, pp. 198–209. Springer, Heidelberg (2012)Google Scholar
  46. 46.
    Stepney, S., Kendon, V., Hines, P., Sebald, A.: A framework for heterotic computing. In: 8th Workshop on Quantum Physics and Logic (QPL 2011) Nijmegen, Netherlands, EPTCS, vol. 95, pp. 263–273 (2012)Google Scholar
  47. 47.
    Tóth, Á., Showalter, K.: Logic gates in excitable media. J. Chem. Phys. 103, 2058–2066 (1995)CrossRefGoogle Scholar
  48. 48.
    Tucker, R.S.: The role of optics in computing. Nat. Photonics 4, 405 (2010).  https://doi.org/10.1038/nphoton.2010.162CrossRefGoogle Scholar
  49. 49.
    Woods, D., Naughton, T.J.: Parallel and sequential optical computing. In: Optical SuperComputing. LNCS, vol. 5172, pp. 70–86. Springer (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of PhysicsDurham UniversityDurhamUK

Personalised recommendations