Advertisement

Context-Aware Coproduction: Implications for Recommendation Algorithms

  • Jiawei ChenEmail author
  • Afsaneh Doryab
  • Benjamin V. Hanrahan
  • Alaaeddine Yousfi
  • Jordan Beck
  • Xiying Wang
  • Victoria Bellotti
  • Anind K. Dey
  • John M. Carroll
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11420)

Abstract

Coproduction is an important form of service exchange in local community where members perform and receive services among each other on non-profit basis. Local coproduction systems enhance community connections and re-energize neighborhoods but face difficulties matching relevant and convenient transaction opportunities. Context-aware recommendations can provide promising solutions, but are so far limited to matching spatio-temporal and static user contexts. By analyzing data from a transportation-share app during a 3-week study with 23 participants, we extend the design scope for context-aware recommendation algorithms to include important community-based parameters such as sense of community. We find that inter- and intra-relationships between spatio-temporal and community-based social contexts significantly impact users’ motivation to request or provide service. The results provide novel insights for designing context-aware recommendation algorithms for community coproduction services.

Keywords

Context-awareness Community Coproduction 

References

  1. 1.
    Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 191–226. Springer, Boston, MA (2015).  https://doi.org/10.1007/978-1-4899-7637-6_6CrossRefzbMATHGoogle Scholar
  2. 2.
    Agatz, N., Erera, A., Savelsbergh, M., Wang, X.: Optimization for dynamic ride-sharing: a review. Eur. J. Oper. Res. 223(2), 295–303 (2012)CrossRefGoogle Scholar
  3. 3.
    Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int. J. Ad Hoc Ubiquit. Comput. 2(4), 263–277 (2007)CrossRefGoogle Scholar
  4. 4.
    Bastian, M., Heymann, S., Jacomy, M., et al.: Gephi: an open source software for exploring and manipulating networks. ICWSM 8, 361–362 (2009)Google Scholar
  5. 5.
    Biancalana, C., Flamini, A., Gasparetti, F., Micarelli, A., Millevolte, S., Sansonetti, G.: Enhancing traditional local search recommendations with context-awareness. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 335–340. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22362-4_29CrossRefGoogle Scholar
  6. 6.
    Black, D., Clemmensen, N.J., Skov, M.B.: Pervasive computing in the supermarket: designing a context-aware shopping trolley. In: Social and Organizational Impacts of Emerging Mobile Devices: Evaluating Use, pp. 172–185. IGI Global (2012)Google Scholar
  7. 7.
    Cahn, E.: Co-production 2.0: retrofitting human service programs to tap the renewable energy of community. Community Currency Mag., 36–39 (2010)Google Scholar
  8. 8.
    Cahn, E.S.: No More Throw-Away People: The Co-production Imperative. Edgar Cahn (2000)Google Scholar
  9. 9.
    Carroll, J.M.: Co-production scenarios for mobile time banking. In: Dittrich, Y., Burnett, M., Mørch, A., Redmiles, D. (eds.) IS-EUD 2013. LNCS, vol. 7897, pp. 137–152. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38706-7_11CrossRefGoogle Scholar
  10. 10.
    Carroll, J.M., Chen, J., Yuan, C.W.T., Hanrahan, B.V.: In search of coproduction: smart services as reciprocal activities. Computer 49(7), 26–32 (2016)CrossRefGoogle Scholar
  11. 11.
    Chavis, D.M., Lee, K.S., Acosta, J.D.: The sense of community (SCI) revised: the reliability and validity of the SCI-2. In: 2nd International Community Psychology Conference, Lisboa, Portugal (2008)Google Scholar
  12. 12.
    Cici, B., Markopoulou, A., Frias-Martinez, E., Laoutaris, N.: Assessing the potential of ride-sharing using mobile and social data: a tale of four cities. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 201–211. ACM (2014)Google Scholar
  13. 13.
    Cici, B., Markopoulou, A., Laoutaris, N.: SORS: a scalable online ridesharing system. In: Proceedings of the 9th ACM SIGSPATIAL International Workshop on Computational Transportation Science, pp. 13–18. ACM (2016)Google Scholar
  14. 14.
    Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Hum.-Comput. Interact. 16(2), 97–166 (2001)CrossRefGoogle Scholar
  15. 15.
    Doryab, A., Bellotti, V., Yousfi, A., Wu, S., Carroll, J.M., Dey, A.K.: If it’s convenient: leveraging context in peer-to-peer variable service transaction recommendations. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 1(3), 48 (2017)CrossRefGoogle Scholar
  16. 16.
    Feng, L., Apers, P.M.G., Jonker, W.: Towards context-aware data management for ambient intelligence. In: Galindo, F., Takizawa, M., Traunmüller, R. (eds.) DEXA 2004. LNCS, vol. 3180, pp. 422–431. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30075-5_41CrossRefGoogle Scholar
  17. 17.
    Ferreira, D., Kostakos, V., Dey, A.K.: AWARE: mobile context instrumentation framework. Front. ICT 2, 6 (2015)CrossRefGoogle Scholar
  18. 18.
    Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Experience 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  19. 19.
    Furuhata, M., Dessouky, M., Ordóñez, F., Brunet, M.E., Wang, X., Koenig, S.: Ridesharing: the state-of-the-art and future directions. Transp. Res. Part B Methodol. 57, 28–46 (2013)CrossRefGoogle Scholar
  20. 20.
    Grudin, J.: Groupware and social dynamics: eight challenges for developers. Commun. ACM 37(1), 92–105 (1994)CrossRefGoogle Scholar
  21. 21.
    Han, K., Shih, P.C., Bellotti, V., Carroll, J.M.: It’s time there was an app for that too: a usability study of mobile timebanking. Int. J. Mob. Hum. Comput. Interact. (IJMHCI) 7(2), 1–22 (2015)CrossRefGoogle Scholar
  22. 22.
    Hutchinson, H., et al.: Technology probes: inspiring design for and with families. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 17–24. ACM (2003)Google Scholar
  23. 23.
    Jung, H., et al.: ‘MASTerful’ matchmaking in service transactions: inferred abilities, needs and interests versus activity histories. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 1644–1655. ACM (2016)Google Scholar
  24. 24.
    Lampinen, A., Lehtinen, V., Cheshire, C., Suhonen, E.: Indebtedness and reciprocity in local online exchange. In: Proceedings of the 2013 Conference on Computer Supported Cooperative Work, pp. 661–672. ACM (2013)Google Scholar
  25. 25.
    Masden, C.A., Grevet, C., Grinter, R.E., Gilbert, E., Edwards, W.K.: Tensions in scaling-up community social media: a multi-neighborhood study of nextdoor. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems, pp. 3239–3248. ACM (2014)Google Scholar
  26. 26.
    Molm, L.D., Collett, J.L., Schaefer, D.R.: Building solidarity through generalized exchange: a theory of reciprocity. Am. J. Soc. 113(1), 205–242 (2007)CrossRefGoogle Scholar
  27. 27.
    Ozanne, L.K.: Learning to exchange time: benefits and obstacles to time banking (2010)Google Scholar
  28. 28.
    Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for the internet of things: a survey. IEEE Commun. Surv. Tutorials 16(1), 414–454 (2014)CrossRefGoogle Scholar
  29. 29.
    Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: First Workshop on Mobile Computing Systems and Applications, WMCSA 1994, pp. 85–90. IEEE (1994)Google Scholar
  30. 30.
    Shih, P.C., Bellotti, V., Han, K., Carroll, J.M.: Unequal time for unequal value: implications of differing motivations for participation in timebanking. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 1075–1084. ACM (2015)Google Scholar
  31. 31.
    Yuan, C.W.T., Hanrahan, B.V., Carroll, J.M.: Is there social capital in service exchange tools? Investigating timebanking use and social capital development. Comput. Hum. Behav. 81, 274–281 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jiawei Chen
    • 1
    Email author
  • Afsaneh Doryab
    • 2
  • Benjamin V. Hanrahan
    • 1
  • Alaaeddine Yousfi
    • 3
  • Jordan Beck
    • 1
  • Xiying Wang
    • 4
  • Victoria Bellotti
    • 5
  • Anind K. Dey
    • 6
  • John M. Carroll
    • 1
  1. 1.The Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Carnegie Mellon University HCI InstitutePittsburghUSA
  3. 3.Hasso Plattner InstituteUniversity of PotsdamPotsdamGermany
  4. 4.WorkSpanFoster CityUSA
  5. 5.LyftSan FranciscoUSA
  6. 6.University of WashingtonSeattleUSA

Personalised recommendations