Advertisement

Keyword Search on RDF Datasets

  • Dennis DossoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11438)

Abstract

In the last years, the Resource Description Framework (RDF) has gained popularity as the de-facto representation format for heterogeneous structured data on the Web. RDF datasets are interrogated via the SPARQL language, which is often not intuitive for a user since it requires the knowledge of the syntax, the underlying structure of the dataset and the IRIs. On the other hand, today users are accustomed to Web-based search facilities that propose simple keyword-based interfaces to interrogate data. Hence, in order to ease the access to the data to users, we aim to develop of an effective and efficient system for keyword search over RDF graphs. Furthermore, we propose a methodology to properly evaluate these systems. Finally, we aim to address the problem of the explainability of the information contained in the answers to non-expert users.

Keywords

RDF graphs Keyword search Explainability 

References

  1. 1.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76298-0_52CrossRefGoogle Scholar
  2. 2.
    Bast, H., Buchhold, B., Haussmann, H.: Semantic search on text and knowledge bases. Found. Trends Inf. Retr. 10(2–3), 119–271 (2016)CrossRefGoogle Scholar
  3. 3.
    Bergamaschi, S., Ferro, N., Guerra, F., Silvello, G.: Keyword-based search over databases: a roadmap for a reference architecture paired with an evaluation framework. In: Nguyen, N.T., Kowalczyk, R., Rupino da Cunha, P. (eds.) Transactions on Computational Collective Intelligence XXI. LNCS, vol. 9630, pp. 1–20. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49521-6_1CrossRefGoogle Scholar
  4. 4.
    Coffman, J., Weaver, A.C.: A framework for evaluating database keyword search strategies. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 729–738. ACM Press (2010)Google Scholar
  5. 5.
    Coffman, J., Weaver, A.C.: An empirical performance evaluation of relational keyword search systems. IEEE Trans. Knowl. Data Eng. 26(1), 30–42 (2014)CrossRefGoogle Scholar
  6. 6.
    Doan, A., Ramakrishnan, R., Vaithyanathan, S.: Managing information extraction: state of the art and research directions. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, pp. 799–800. ACM (2006)Google Scholar
  7. 7.
    Elbassuoni, S., Blanco, R.: Keyword search over RDF graphs. In: Proceedings of the 20th ACM Conference on Information and Knowledge Management, CIKM 2011, pp. 237–242. ACM Press, New York (2011)Google Scholar
  8. 8.
    Feigenbaum, L., Herman, I., Hongsermeier, T., Neumann, E., Stephens, S.: The semantic web in action. Sci. Am. 297(6), 90–97 (2007)CrossRefGoogle Scholar
  9. 9.
    Mass, Y., Sagiv, Y.: Virtual documents and answer priors in keyword search over data graphs. In: Proceedings of the Workshops of the EDBT/ICDT 2016 Joint Conference, CEUR Workshop Proceedings, vol. 1558. CEUR-WS.org (2016)Google Scholar
  10. 10.
    Paschke, A., Burger, A., Romano, P., Marshall, M.S., Splendiani., A. (eds.) Proceedings of the 6th International Workshop on Semantic Web Applications and Tools for Life Sciences, Edinburgh, UK, 10 December 2013, CEUR Workshop Proceedings, vol. 1114. CEUR-WS.org (2014)Google Scholar
  11. 11.
    Petras, V., Hill, T., Stiller, J., Gäde, M.: Europeana - a search engine for digitised cultural heritage material. Datenbank-Spektrum 17(1), 41–46 (2017)CrossRefGoogle Scholar
  12. 12.
    Pound, J., Mika, P., Zaragoza, H.: Ad-hoc object retrieval in the web of data. In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010. pp. 771–780. ACM Press, New York (2010)Google Scholar
  13. 13.
    Torniai, C., Bourges-Waldegg, D., Hoffmann, S.: eagle-i: biomedical research resource datasets. Semant. Web 6(2), 139–146 (2015)Google Scholar
  14. 14.
    Wang, H., Aggarwal, C.C.: A survey of algorithms for keyword search on graph data. In: Aggarwal, C., Wang, H. (eds.) Managing and Mining Graph Data. ADBS, vol. 40, pp. 249–273. Springer, Boston (2010).  https://doi.org/10.1007/978-1-4419-6045-0_8CrossRefzbMATHGoogle Scholar
  15. 15.
    Yu, J.X., Qin, L., Chang, L.: Keyword search in relational databases: a survey. IEEE Data Eng. Bull. 33(1), 67–78 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Information EngineeringUniversity of PaduaPaduaItaly

Personalised recommendations