Heterogeneous Edge Embedding for Friend Recommendation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11438)


We propose a friend recommendation system (an application of link prediction) using edge embedding on social networks. Most real world social networks are multi-graphs, where different kinds of relationships (e.g., chat, friendship) are possible between a pair of users. Existing network embedding techniques do not leverage signals from different edge types and thus perform inadequately on link prediction in such networks. We propose a method to mine network representation that effectively exploits edge heterogeneity in multi-graphs. We evaluate our model on a real-world, active social network where this system is deployed for friend recommendation for millions of users. Our method outperforms various state-of-the-art baselines on Hike’s social network in terms of accuracy metrics as well as user satisfaction.


  1. 1.
    Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, pp. 635–644. ACM (2011)Google Scholar
  2. 2.
    Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)CrossRefGoogle Scholar
  3. 3.
    Chang, S., Han, W., Tang, J., Qi, G.J., Aggarwal, C.C., Huang, T.S.: Heterogeneous network embedding via deep architectures. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 119–128. ACM (2015)Google Scholar
  4. 4.
    Cui, P., Wang, X., Pei, J., Zhu, W.: A survey on network embedding. IEEE Trans. Knowl. Data Eng. (2018)Google Scholar
  5. 5.
    Dong, Y., Chawla, N.V., Swami, A.: Metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017, pp. 135–144. ACM, New York (2017)Google Scholar
  6. 6.
    Dong, Y., et al.: Link prediction and recommendation across heterogeneous social networks. In: 2012 IEEE 12th International Conference on Data Mining, pp. 181–190. IEEE (2012)Google Scholar
  7. 7.
    Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. CoRR abs/1607.00653 (2016).
  8. 8.
    Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: methods and applications. CoRR abs/1709.05584 (2017).
  9. 9.
    Hong, S., Chakraborty, T., Ahn, S., Husari, G., Park, N.: SENA: preserving social structure for network embedding. In: Proceedings of the 28th ACM Conference on Hypertext and Social Media, pp. 235–244. ACM (2017)Google Scholar
  10. 10.
    Hong, S., Park, N., Chakraborty, T., Kang, H., Kwon, S.: PAGE: answering graph pattern queries via knowledge graph embedding. In: Chin, F.Y.L., Chen, C.L.P., Khan, L., Lee, K., Zhang, L.-J. (eds.) BIGDATA 2018. LNCS, vol. 10968, pp. 87–99. Springer, Cham (2018). Scholar
  11. 11.
    Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. arXiv preprint arXiv:1702.08734 (2017)
  12. 12.
    Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)CrossRefGoogle Scholar
  13. 13.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. CoRR abs/1301.3781 (2013).
  14. 14.
    Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, pp. 701–710. ACM, New York (2014)Google Scholar
  15. 15.
    Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Committee (2015)Google Scholar
  16. 16.
    Zeng, S.: Link prediction based on local information considering preferential attachment. Phys. A: Stat. Mech. Appl. 443, 537–542 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Hike MessengerNew DelhiIndia
  2. 2.IIIT DelhiNew DelhiIndia

Personalised recommendations