Advertisement

A Simple Neural Approach to Spatial Role Labelling

  • Nitin RamrakhiyaniEmail author
  • Girish Palshikar
  • Vasudeva Varma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11438)

Abstract

Spatial Role Labelling involves identification of text segments which emit spatial semantics such as describing an object of interest, a reference point or the object’s relative position with the reference. Tasks in SemEval exercises of 2012 and 2013 propose problems and datasets for Spatial Role Labelling. In this paper, we propose a simple two-step neural network based approach to identify static spatial relations along with the three primary roles - Trajector, Landmark and Spatial Indicator. Our approach outperforms the task submission results and other state-of-the-art results on these datasets. We also include a discussion on the explainability of our model.

Keywords

Spatial role labelling Spatial representation and reasoning Deep learning BiLSTM 

References

  1. 1.
    Bastianelli, E., Croce, D., Basili, R., Nardi, D.: UNITOR-HMM-TK: structured kernel-based learning for spatial role labeling. In: Second Joint Conference on Lexical and Computational Semantics (* SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), vol. 2, pp. 573–579 (2013)Google Scholar
  2. 2.
    Chollet, F.: Keras. GitHub repository. https://github.com/fchollet/keras. Accessed 26 Oct 2018
  3. 3.
    Grubinger, M., Clough, P., Müller, H., Deselaers, T.: The IAPR TC-12 benchmark: a new evaluation resource for visual information systems. In: International Workshop OntoImage, vol. 5 (2006)Google Scholar
  4. 4.
    Kolomiyets, O., Kordjamshidi, P., Moens, M.F., Bethard, S.: SemEval-2013 task 3: spatial role labeling. In: Second Joint Conference on Lexical and Computational Semantics (* SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013), vol. 2, pp. 255–262 (2013)Google Scholar
  5. 5.
    Kordjamshidi, P., Bethard, S., Moens, M.F.: SemEval-2012 task 3: spatial role labeling. In: Proceedings of the First Joint Conference on Lexical and Computational Semantics-Volume 1: Proceedings of the Main Conference and the Shared Task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation, pp. 365–373. Association for Computational Linguistics (2012)Google Scholar
  6. 6.
    Kordjamshidi, P., Moens, M.F.: Global machine learning for spatial ontology population. Web Semant.: Sci. Serv. Agents World Wide Web 30, 3–21 (2015)CrossRefGoogle Scholar
  7. 7.
    Ludwig, O., Liu, X., Kordjamshidi, P., Moens, M.F.: Deep embedding for spatial role labeling. arXiv preprint arXiv:1603.08474 (2016)
  8. 8.
    Mazalov, A., Martins, B., Matos, D.: Spatial role labeling with convolutional neural networks. In: Proceedings of the 9th Workshop on Geographic Information Retrieval, p. 12. ACM (2015)Google Scholar
  9. 9.
    Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)Google Scholar
  10. 10.
    Pustejovsky, J., Kordjamshidi, P., Moens, M.F., Levine, A., Dworman, S., Yocum, Z.: SemEval-2015 task 8: SpaceEval. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 884–894 (2015)Google Scholar
  11. 11.
    Pustejovsky, J., Moszkowicz, J.L., Verhagen, M.: ISO-space: the annotation of spatial information in language. In: Proceedings of the Sixth Joint ISO-ACL SIGSEM Workshop on Interoperable Semantic Annotation, vol. 6, pp. 1–9 (2011)Google Scholar
  12. 12.
    Roberts, K., Harabagiu, S.M.: UTD-SPRL: a joint approach to spatial role labeling. In: Proceedings of the First Joint Conference on Lexical and Computational Semantics-Volume 1: Proceedings of the Main Conference and the Shared Task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation, pp. 419–424. Association for Computational Linguistics (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nitin Ramrakhiyani
    • 1
    • 2
    Email author
  • Girish Palshikar
    • 1
  • Vasudeva Varma
    • 2
  1. 1.TCS ResearchTata Consultancy Services Ltd.PuneIndia
  2. 2.International Institute of Information TechnologyHyderabadIndia

Personalised recommendations