Advertisement

Recurrence as a Basis for the Assessment of Predictability of the Irregular Population Dynamics

  • Alexander B. Medvinsky
Chapter
Part of the STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health book series (STEAM)

Abstract

I give a brief overview of a number of methods that are aimed to assess predictability of population dynamics. Besides, a few examples of using the methods based on the recurrence nature of fluctuations of the population size in order to evaluate numerically the horizon of predictability time series resulted from both field observations and mathematical modeling of population dynamics are given in this paper.

Keywords

Predictability Population dynamics 

Notes

Acknowledgments

The author is deeply grateful to anonymous reviewers. This work was partly supported by the Russian Foundation for Basic Research (grant # 17-04-00048).

References

  1. 1.
    S. Laplace, Essai Philosophique sur Les Probabilités (Courcier, Paris, 1814)zbMATHGoogle Scholar
  2. 2.
    H. Poincaré, Sur le problème des trois corps. Bull. Astron. 8, 12–24 (1891)Google Scholar
  3. 3.
    E. Ott, Chaos in Dynamical Systems (Cambridge University, Cambridge, 2002)CrossRefGoogle Scholar
  4. 4.
    H. Poincaré, Sur le problème des trois corps et les équations de la dynamique. Acta Math. 13, 1–270 (1890)zbMATHMathSciNetGoogle Scholar
  5. 5.
    O.I. Petchey, M. Pontarp, T.M. Massie, S. Kéfi, A. Ozgul, M. Weilenmann, G.M. Palamara, F. Altermatt, B. Matthews, J.M. Levine, D.Z. Childs, B.J. McGill, M.E. Schaepman, B. Schmid, P. Spaak, A.P. Beckerman, F. Pennekamp, I.S. Pearse, The ecology forecast horizon, and examples of its uses and determinants. Ecol. Lett. 18, 597–611 (2015)CrossRefGoogle Scholar
  6. 6.
    R.V. Solé, J. Bascompte, Self-Organization in Complex Ecosystems (Princeton University, Princeton, 2006)CrossRefGoogle Scholar
  7. 7.
    F. Pannekamp, M.W. Adamson, O.I. Petchey, J.-C. Poggiale, M. Aguiar, B.W. Kooi, D.B. Botkin, D.L. DeAngelis, The practice of prediction: what can ecologists learn from applied, ecology-related fields? Ecol. Complex. 32(Part B), 156–167 (2017)CrossRefGoogle Scholar
  8. 8.
    F.R.S. Lighthill, The recently recognized failure of predictability in Newtonian dynamics. Proc. R. Soc. Lond. A 407, 35–50 (1986)CrossRefGoogle Scholar
  9. 9.
    H. Kantz, A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 185, 77–87 (1994)CrossRefGoogle Scholar
  10. 10.
    H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (Cambridge University, Cambridge, 1997)zbMATHGoogle Scholar
  11. 11.
    M.T. Rosenstein, J.J. Collins, C.J. De Luca, A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D 65, 117–134 (1993)CrossRefMathSciNetGoogle Scholar
  12. 12.
    G. Boffetta, M. Cencini, M. Falcioni, A. Vulpiani, Predictability: a way to characterize complexity. Phys. Rep. 356, 367–474 (2002)CrossRefMathSciNetGoogle Scholar
  13. 13.
    P. Turchin, Complex Population Dynamics. A Theoretical/Empirical Synthesis (Princeton University, Princeton, 2003)zbMATHGoogle Scholar
  14. 14.
    L. Becks, F.M. Hilker, H. Malchow, K. Jürgens, H. Arndt, Experimental demonstration of chaos in a microbial food web. Nature 435, 1226–1229 (2005)CrossRefGoogle Scholar
  15. 15.
    D. Kaplan, L. Glass, Understanding Nonlinear Dynamics (Springer, New York, 1995)CrossRefGoogle Scholar
  16. 16.
    A.B. Medvinsky, A.V. Rusakov, Chaos and order in stateless societies: intercommunity exchange as a factor impacting the population dynamical patterns. Chaos Solitons Fractals 44, 390–400 (2011)CrossRefMathSciNetGoogle Scholar
  17. 17.
    A.B. Medvinsky, Chaos and predictability in population dynamics. Nonlinear Dynamics Psychol. Life Sci. 13, 311–326 (2009)MathSciNetGoogle Scholar
  18. 18.
    A.E. Bobyrev, V.A. Burmensky, E.A. Kriksunov, A.B. Medvinsky, M.M. Melnik, N.I. Nurieva, A.V. Rusakov, The analysis of commercial fish population size oscillations in Lake Peipus. Biofizika 57, 140–145 (2012)Google Scholar
  19. 19.
    S.M. Henson, R.F. Costantino, J.M. Cushing, R.A. Desharnais, B. Dennis, A.A. King, Lattice effects observed in chaotic dynamics of experimental populations. Science 294, 602–605 (2001)CrossRefGoogle Scholar
  20. 20.
    A.B. Medvinsky, A.V. Rusakov, N.I. Nurieva, Integer-based modeling of population dynamics: competition between attractors limits predictability. Ecol. Complex. 14, 108–116 (2013)CrossRefGoogle Scholar
  21. 21.
    W.E. Ricker, Stock and recruitment. J. Fish. Res. Board Can. 11, 559–623 (1954)CrossRefGoogle Scholar
  22. 22.
    P. Turchin, A.D. Taylor, Complex dynamics in ecological time series. Ecology 73, 289–305 (1992)CrossRefGoogle Scholar
  23. 23.
    P. Turchin, S.P. Ellner, Living on the edge of chaos: population dynamics of Fennoscandian voles. Ecology 81, 3099–3116 (2000)CrossRefGoogle Scholar
  24. 24.
    J.-P. Eckmann, S. Oliffson Kamphorst, D. Ruelle, Recurrence plots of dynamical systems. Europhys. Lett. 4, 973–977 (1987)CrossRefGoogle Scholar
  25. 25.
    N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Recurrense plots for the analysis of complex systems. Phys. Rep. 438, 237–329 (2007)CrossRefMathSciNetGoogle Scholar
  26. 26.
    A.B. Medvinsky, B.V. Adamovich, A. Chakraborty, E.V. Lukyanova, T.M. Mikheyeva, N.I. Nurieva, N.P. Radchikova, A.V. Rusakov, T.V. Zhukova, Chaos far away from the edge of chaos: a recurrence quantification analysis of plankton time series. Ecol. Complex. 23, 61–67 (2015)CrossRefGoogle Scholar
  27. 27.
    A.B. Medvinsky, B.V. Adamovich, R.R. Aliev, A. Chakraborty, E.V. Lujyanova, T.M. Mikheyeva, L.V. Nikitina, N.I. Nurieva, A.V. Rusakov, T.V. Zhukova, Temperature as a factor affecting fluctuations and predictability of the abundance of lake bacterioplankton. Ecol. Complex. 32, 90–98 (2017)CrossRefGoogle Scholar
  28. 28.
    D.A. Vasseur, Assessing the impact of environmental variability on trophic systems using an allometric frequency-resolved approach, in The Impact of Environmental Variability on Ecological Systems, ed. by D. A. Vasseur, K. S. Mc Cann, (Springer, Dordrecht, 2007), pp. 49–60CrossRefGoogle Scholar
  29. 29.
    A.B. Medvinsky, S.V. Petrovskii, I.A. Tikhonova, H. Malchow, B.-L. Li, Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 44, 311–370 (2002)CrossRefMathSciNetGoogle Scholar
  30. 30.
    O.L. Zhdanova, A.E. Kuzin, E.I. Skaletskaya, E.Y. Frisman, Why the population of the northern fur seals (Callorhinus ursinus) of Tyuleniy Island does not recover following the harvest ban: analysis of 56 years of observation data. Ecol. Model. 363, 57–67 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexander B. Medvinsky
    • 1
  1. 1.Institute of Theoretical and Experimental BiophysicsPushchinoRussia

Personalised recommendations