Advertisement

Maddy On The Multiverse

  • Claudio TernulloEmail author
Chapter
Part of the Synthese Library book series (SYLI, volume 407)

Abstract

Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits (Maddy, Set-theoretic foundations. In: Caicedo et al (eds) Foundations of mathematics. Essays in honor of W. Hugh Woodin’s 60th birthday. Contemporary mathematics. American Mathematical Society, Providence, pp. 289–322, 2017). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of ‘multiversism’, and then I proceed to analyse Maddy’s concerns. Among other things, I take into account salient aspects of multiverse-related mathematics, in particular, research programmes in set theory for which the use of the multiverse seems to be crucial, and show how one may provide responses to Maddy’s concerns based on a careful analysis of ‘multiverse practice’.

Notes

Acknowledgement

I would like to thank the University of Tartu for its support through ASTRA project PER ASPERA (financed by the European Regional Development Fund).

References

  1. Antos, C., Friedman, S.-D., Honzik, R., & Ternullo, C. (2015). Multiverse conceptions in set theory. Synthese, 192(8), 2463–2488.CrossRefGoogle Scholar
  2. Arrigoni, T., & Friedman, S. (2013). The hyperuniverse program. Bulletin of Symbolic Logic, 19(1), 77–96.CrossRefGoogle Scholar
  3. Bagaria, J., Castells, N., & Larson, P. (2006). An Omega-logic primer. In J. Bagaria & S. Todorcevic (Eds.), Set theory (Trends in mathematics, pp. 1–28). Basel: Birkhäuser.Google Scholar
  4. Balaguer, M. (1995). A platonist epistemology. Synthese, 103, 303–25.CrossRefGoogle Scholar
  5. Balaguer, M. (1998). Platonism and anti-platonism in mathematics. Oxford: Oxford University Press.Google Scholar
  6. Boolos, G. (1971). The iterative conception of set. Journal of Philosophy, 68(8), 215–231.CrossRefGoogle Scholar
  7. Buzaglo, M. (2002). The logic of concept expansion. Cambridge: Cambridge University Press.Google Scholar
  8. Ferreirós, J. (2010). Labyrinth of thought. A history of set theory and its role in modern mathematics. Basel: Birkhäuser.Google Scholar
  9. Field, H. (2001). Truth and absence of fact. Oxford: Oxford University Press.CrossRefGoogle Scholar
  10. Friedman, S. (2016). Evidence for set-theoretic truth and the hyperuniverse programme. IfCoLog Journal of Logics and their Applications, 3(4), 517–555.Google Scholar
  11. Gödel, K. (1947). What is Cantor’s continuum problem? American Mathematical Monthly, 54, 515–525.CrossRefGoogle Scholar
  12. Hamkins, J. D. (2012). The set-theoretic multiverse. Review of Symbolic Logic, 5(3), 416–449.CrossRefGoogle Scholar
  13. Koellner, P. (2009). On reflection principles. Annals of Pure and Applied Logic, 157(2–3), 206–219.CrossRefGoogle Scholar
  14. Koellner, P. (2014). Large cardinals and determinacy. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2014 Edition). http://plato.stanford.edu/archives/spr2014/entries/large-cardinals-determinacy/
  15. Lakatos, I. (1976). Proofs and refutations. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. Linnebo, Ø. (2013). The potential hierarchy of sets. Review of Symbolic Logic, 6(2), 205–228.CrossRefGoogle Scholar
  17. Maddy, P. (1996). Set-theoretic naturalism. Bulletin of Symbolic Logic, 61(2), 490–514.CrossRefGoogle Scholar
  18. Maddy, P. (1997). Naturalism in mathematics. Oxford: Oxford University Press.Google Scholar
  19. Maddy, P. (2007). Second philosophy: A naturalistic method. Oxford: Oxford University Press.CrossRefGoogle Scholar
  20. Maddy, P. (2011). Defending the axioms. Oxford: Oxford University Press.CrossRefGoogle Scholar
  21. Maddy, P. (2017). Set-theoretic foundations. In A. Caicedo, J. Cummings, P. Koellner, & P. B. Larson (Eds.), Foundations of mathematics. Essays in Honor of W. Hugh Woodin’s 60th Birthday (Contemporary mathematics, Vol. 690, pp. 289–322). Providence: American Mathematical Society.Google Scholar
  22. Martin, D. (2001). Multiple universes of sets and indeterminate truth values. Topoi, 20, 5–16.CrossRefGoogle Scholar
  23. Paseau, A. (2016). Naturalism in the philosophy of mathematics. In M. Leng (Ed.), Stanford encyclopedia of philosophy. New York: Oxford University Press.Google Scholar
  24. Shapiro, S. (1991). Foundations without foundationalism. A case for second-order logic. Oxford: Oxford University Press.Google Scholar
  25. Shelah, S. (2003). Logical dreams. Bulletin of the American Mathematical Society, 40(2), 203–228.CrossRefGoogle Scholar
  26. Steel, J. (2014). Gödel’s program. In J. Kennedy (Ed.), Interpreting Gödel. Critical essays (pp. 153–179). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  27. Ternullo, C., & Friedman, S.-D. (2016). The search for new axioms in the hyperuniverse programme. In F. Boccuni & A. Sereni (Eds.), Philosophy of mathematics: Objectivity, realism and proof. Filmat studies in the philosophy of mathematics (Boston studies in philosophy of science, pp. 165–188). Berlin: Springer.Google Scholar
  28. Väänänen, J. (2014). Multiverse set theory and absolutely undecidable propositions. In J. Kennedy (Ed.), Interpreting Gödel. Critical essays (pp. 180–205). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  29. Viale, M. (2016). Category forcings, MM+++ and generic absoluteness for the theory of strong forcing axioms. Journal of the American Mathematical Society, 29(3), 675–728.CrossRefGoogle Scholar
  30. Wang, H. (1974). From mathematics to philosophy. London: Routledge & Kegan Paul.Google Scholar
  31. Woodin, W. H. (1999). The axiom of determinacy, forcing axioms and the non-stationary ideal. Berlin: De Gruyter.CrossRefGoogle Scholar
  32. Woodin, W. H. (2001). The continuum hypothesis. Notices of the American Mathematical Society, Part 1: 48(6), 567–576; Part 2: 48(7), 681–690.Google Scholar
  33. Woodin, W. H. (2011). The realm of the infinite. In W. H. Woodin & M. Heller (Eds.), Infinity. New research frontiers (pp. 89–118). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  34. Zermelo, E. (1908). Investigations in the foundations of set theory. In J. van Heijenoort (Ed.), From frege to Gödel. A source book in mathematical logic, 1879–1931 (pp. 199–215). Harvard: Harvard University Press.Google Scholar
  35. Zermelo, E. (1930). Über Grenzzahlen und Mengenbereiche: neue Untersuchungen über die Grundlagen der Mengenlehre. Fundamenta Mathematicae, 16, 29–47.CrossRefGoogle Scholar

References to Reply to Ternullo on the Multiverse

  1. Hamkins, J. (2012). The set-theoretic multiverse. Review of Symbolic Logic, 5(3), 416–449.CrossRefGoogle Scholar
  2. Koellner, P. (2013). Hamkins on the multiverse. EFI paper. http://logic.harvard.edu/efi.php#multimedia Google Scholar
  3. Koellner, P. (2014). Large cardinals and determinacy. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2014 Edition). https://plato.stanford.edu/archives/spr2014/entries/large-cardinals-determinacy/
  4. Maddy, P. (2011). Defending the axioms. Oxford: Oxford University Press.CrossRefGoogle Scholar
  5. Maddy, P. (2017). Set-theoretic foundations. In: A. Caicedo, J. Cummings, P. Koellner, & P. Larson (Eds.), Foundations of mathematics: Essays in honor of W. Hugh Woodin’s 60th birthday (pp. 289–322). Providence: AMS.CrossRefGoogle Scholar
  6. Steel, J. (2014). Gödel’s program. In J. Kennedy (Ed.), Interpreting gödel (pp. 153–179). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  7. Ternullo, C. (2019) Maddy on the multiverse, this volume.Google Scholar
  8. Zermelo, E. (1930). On boundary numbers and domains of sets. In: H.-D. Ebbinghaus, C. Fraser, & A. Kanamori (Eds.), Ernst Zermelo: Collected Works (Vol. I, 2010, pp. 400–431). Heidelberg: Springer.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of TartuTartuEstonia

Personalised recommendations