# Maddy On The Multiverse

## Abstract

Penelope Maddy has recently addressed the set-theoretic multiverse, and expressed reservations on its status and merits (Maddy, Set-theoretic foundations. In: Caicedo *et al* (eds) Foundations of mathematics. Essays in honor of W. Hugh Woodin’s 60th birthday. Contemporary mathematics. American Mathematical Society, Providence, pp. 289–322, 2017). The purpose of the paper is to examine her concerns, by using the interpretative framework of set-theoretic naturalism. I first distinguish three main forms of ‘multiversism’, and then I proceed to analyse Maddy’s concerns. Among other things, I take into account salient aspects of multiverse-related mathematics, in particular, research programmes in set theory for which the use of the multiverse seems to be crucial, and show how one may provide responses to Maddy’s concerns based on a careful analysis of ‘multiverse practice’.

## Notes

### Acknowledgement

I would like to thank the University of Tartu for its support through ASTRA project PER ASPERA (financed by the European Regional Development Fund).

## References

- Antos, C., Friedman, S.-D., Honzik, R., & Ternullo, C. (2015). Multiverse conceptions in set theory.
*Synthese, 192*(8), 2463–2488.CrossRefGoogle Scholar - Arrigoni, T., & Friedman, S. (2013). The hyperuniverse program.
*Bulletin of Symbolic Logic, 19*(1), 77–96.CrossRefGoogle Scholar - Bagaria, J., Castells, N., & Larson, P. (2006). An Omega-logic primer. In J. Bagaria & S. Todorcevic (Eds.),
*Set theory*(Trends in mathematics, pp. 1–28). Basel: Birkhäuser.Google Scholar - Balaguer, M. (1995). A platonist epistemology.
*Synthese, 103*, 303–25.CrossRefGoogle Scholar - Balaguer, M. (1998).
*Platonism and anti-platonism in mathematics*. Oxford: Oxford University Press.Google Scholar - Boolos, G. (1971). The iterative conception of set.
*Journal of Philosophy, 68*(8), 215–231.CrossRefGoogle Scholar - Buzaglo, M. (2002).
*The logic of concept expansion*. Cambridge: Cambridge University Press.Google Scholar - Ferreirós, J. (2010).
*Labyrinth of thought. A history of set theory and its role in modern mathematics*. Basel: Birkhäuser.Google Scholar - Field, H. (2001).
*Truth and absence of fact*. Oxford: Oxford University Press.CrossRefGoogle Scholar - Friedman, S. (2016). Evidence for set-theoretic truth and the hyperuniverse programme.
*IfCoLog Journal of Logics and their Applications, 3*(4), 517–555.Google Scholar - Gödel, K. (1947). What is Cantor’s continuum problem?
*American Mathematical Monthly, 54*, 515–525.CrossRefGoogle Scholar - Hamkins, J. D. (2012). The set-theoretic multiverse.
*Review of Symbolic Logic, 5*(3), 416–449.CrossRefGoogle Scholar - Koellner, P. (2009). On reflection principles.
*Annals of Pure and Applied Logic, 157*(2–3), 206–219.CrossRefGoogle Scholar - Koellner, P. (2014). Large cardinals and determinacy. In E. N. Zalta (Ed.),
*The Stanford encyclopedia of philosophy*(Spring 2014 Edition). http://plato.stanford.edu/archives/spr2014/entries/large-cardinals-determinacy/ - Lakatos, I. (1976).
*Proofs and refutations*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Linnebo, Ø. (2013). The potential hierarchy of sets.
*Review of Symbolic Logic, 6*(2), 205–228.CrossRefGoogle Scholar - Maddy, P. (1996). Set-theoretic naturalism.
*Bulletin of Symbolic Logic, 61*(2), 490–514.CrossRefGoogle Scholar - Maddy, P. (1997).
*Naturalism in mathematics*. Oxford: Oxford University Press.Google Scholar - Maddy, P. (2007).
*Second philosophy: A naturalistic method*. Oxford: Oxford University Press.CrossRefGoogle Scholar - Maddy, P. (2011).
*Defending the axioms*. Oxford: Oxford University Press.CrossRefGoogle Scholar - Maddy, P. (2017). Set-theoretic foundations. In A. Caicedo, J. Cummings, P. Koellner, & P. B. Larson (Eds.),
*Foundations of mathematics. Essays in Honor of W. Hugh Woodin’s 60th Birthday*(Contemporary mathematics, Vol. 690, pp. 289–322). Providence: American Mathematical Society.Google Scholar - Martin, D. (2001). Multiple universes of sets and indeterminate truth values.
*Topoi, 20*, 5–16.CrossRefGoogle Scholar - Paseau, A. (2016). Naturalism in the philosophy of mathematics. In M. Leng (Ed.),
*Stanford encyclopedia of philosophy*. New York: Oxford University Press.Google Scholar - Shapiro, S. (1991).
*Foundations without foundationalism. A case for second-order logic*. Oxford: Oxford University Press.Google Scholar - Shelah, S. (2003). Logical dreams.
*Bulletin of the American Mathematical Society, 40*(2), 203–228.CrossRefGoogle Scholar - Steel, J. (2014). Gödel’s program. In J. Kennedy (Ed.),
*Interpreting Gödel. Critical essays*(pp. 153–179). Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Ternullo, C., & Friedman, S.-D. (2016). The search for new axioms in the hyperuniverse programme. In F. Boccuni & A. Sereni (Eds.),
*Philosophy of mathematics: Objectivity, realism and proof. Filmat studies in the philosophy of mathematics*(Boston studies in philosophy of science, pp. 165–188). Berlin: Springer.Google Scholar - Väänänen, J. (2014). Multiverse set theory and absolutely undecidable propositions. In J. Kennedy (Ed.),
*Interpreting Gödel. Critical essays*(pp. 180–205). Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Viale, M. (2016). Category forcings, MM
^{+++}and generic absoluteness for the theory of strong forcing axioms.*Journal of the American Mathematical Society, 29*(3), 675–728.CrossRefGoogle Scholar - Wang, H. (1974).
*From mathematics to philosophy*. London: Routledge & Kegan Paul.Google Scholar - Woodin, W. H. (1999).
*The axiom of determinacy, forcing axioms and the non-stationary ideal*. Berlin: De Gruyter.CrossRefGoogle Scholar - Woodin, W. H. (2001). The continuum hypothesis.
*Notices of the American Mathematical Society, Part 1: 48*(6), 567–576;*Part 2: 48*(7), 681–690.Google Scholar - Woodin, W. H. (2011). The realm of the infinite. In W. H. Woodin & M. Heller (Eds.),
*Infinity. New research frontiers*(pp. 89–118). Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Zermelo, E. (1908). Investigations in the foundations of set theory. In J. van Heijenoort (Ed.),
*From frege to Gödel. A source book in mathematical logic, 1879–1931*(pp. 199–215). Harvard: Harvard University Press.Google Scholar - Zermelo, E. (1930). Über Grenzzahlen und Mengenbereiche: neue Untersuchungen über die Grundlagen der Mengenlehre.
*Fundamenta Mathematicae, 16*, 29–47.CrossRefGoogle Scholar

## References to Reply to Ternullo on the Multiverse

- Hamkins, J. (2012). The set-theoretic multiverse.
*Review of Symbolic Logic, 5*(3), 416–449.CrossRefGoogle Scholar - Koellner, P. (2013). Hamkins on the multiverse. EFI paper. http://logic.harvard.edu/efi.php#multimedia Google Scholar
- Koellner, P. (2014). Large cardinals and determinacy. In E. N. Zalta (Ed.),
*The Stanford encyclopedia of philosophy*(Spring 2014 Edition). https://plato.stanford.edu/archives/spr2014/entries/large-cardinals-determinacy/ - Maddy, P. (2011).
*Defending the axioms*. Oxford: Oxford University Press.CrossRefGoogle Scholar - Maddy, P. (2017). Set-theoretic foundations. In: A. Caicedo, J. Cummings, P. Koellner, & P. Larson (Eds.),
*Foundations of mathematics: Essays in honor of W. Hugh Woodin’s 60th birthday*(pp. 289–322). Providence: AMS.CrossRefGoogle Scholar - Steel, J. (2014). Gödel’s program. In J. Kennedy (Ed.),
*Interpreting gödel*(pp. 153–179). Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Ternullo, C. (2019) Maddy on the multiverse, this volume.Google Scholar
- Zermelo, E. (1930). On boundary numbers and domains of sets. In: H.-D. Ebbinghaus, C. Fraser, & A. Kanamori (Eds.),
*Ernst Zermelo: Collected Works*(Vol. I, 2010, pp. 400–431). Heidelberg: Springer.Google Scholar