Dynamics in Foundations: What Does It Mean in the Practice of Mathematics?

  • Giovanni SambinEmail author
Part of the Synthese Library book series (SYLI, volume 407)


The search for a synthesis between formalism and constructivism, and meditation on Gödel incompleteness, leads in a natural way to conceive mathematics as dynamic and plural, that is the result of a human achievement, rather than static and unique, that is given truth. This foundational attitude, called dynamic constructivism, has been adopted in the actual development of topology and revealed some deep structures that had remained hidden under other views. After motivations for and a brief introduction to dynamic constructivism, an overview is given of the changes it induces in the practice of mathematics and in its foundation, and of the new results it allows to obtain.


  1. Asperti, A., Maietti, M. E., Sacerdoti Coen, C., Sambin, G., & Valentini, S. (2011). Formalization of formal topology by means of the interactive theorem prover Matita. In J. H. Davenport, W. M. Farmer, J. Urban, & F. Rabe (Eds.), Intelligent computer mathematics (Lecture notes in artificial intelligence, Vol. 6824, pp. 278–280). Berlin/Heidelberg: Springer.Google Scholar
  2. Battilotti, G., & Sambin, G. (2006). Pretopologies and a uniform presentation of sup-lattices, quantales and frames. Annals of Pure and Applied Logic, 137, 30–61.CrossRefGoogle Scholar
  3. Bishop, E. (1967). Foundations of constructive analysis. Toronto: McGraw-Hill.Google Scholar
  4. Ciraulo, F., & Sambin, G. (2010). The overlap algebra of regular opens. Journal of Pure and Applied Algebra, 214, 1988–1995.CrossRefGoogle Scholar
  5. Ciraulo, F., & Sambin, G. (2019). Reducibility, a constructive dual of spatiality. Journal of Logic and Analysis, 11, 1–26.Google Scholar
  6. Coquand, T., Sambin, G., Smith, J., & Valentini, S. (2003). Inductively generated formal topologies. Annals of Pure and Applied Logic, 104, 71–106.CrossRefGoogle Scholar
  7. Dieudonné, J. (1970). The work of Nicholas Bourbaki. American Mathematical Monthly, 77, 134–145.CrossRefGoogle Scholar
  8. Enriques, F. (1906). Problemi della scienza, Zanichelli. English translation: Problems of Science (introd. J. Royce; trans. K. Royce). Chicago: Open Court, 1914.Google Scholar
  9. Fourman, M. P., & Grayson, R. J. (1982). Formal spaces. In A. S. Troelstra & D. van Dalen (Eds.), The L.E.J. Brouwer centenary symposium (Studies in logic and the foundations of mathematics, pp. 107–122). Amsterdam: North-Holland.Google Scholar
  10. Johnstone, P. T. (1982). Stone spaces. Cambridge/New York: Cambridge University Press.Google Scholar
  11. Kuhn, T. S. (1962). The structure of scientific revolutions (2nd enl. ed., 1970). Chicago: University of Chicago Press.Google Scholar
  12. Maietti, M. E. (2009). A minimalist two-level foundation for constructive mathematics. Annals of Pure and Applied Logic, 160, 319–354.CrossRefGoogle Scholar
  13. Maietti, M. E., & Maschio, S. (2014). An extensional Kleene realizability model for the minimalist foundation. In 20th International Conference on Types for Proofs and Programs, TYPES 2014 (pp. 162–186).Google Scholar
  14. Maietti, M. E., & Sambin, G. (2005). Toward a minimalist foundation for constructive mathematics. In L. Crosilla & P. Schuster (Eds.), From sets and types to topology and analysis. Towards practicable foundations for constructive mathematics (Oxford logic guides, Vol. 48, pp. 91–114). Oxford/New York: Oxford University Press.Google Scholar
  15. Martin-Löf, P., & Sambin, G. (2020, to appear). Generating positivity by coinduction. In Sambin (2020, to appear).Google Scholar
  16. Martino, E., & Giaretta, P. (1981). Brouwer, Dummett, and the bar theorem. In S. Bernini (Ed.), Atti del Congresso Nazionale di Logica, Montecatini Terme, 1–5 ottobre 1979 (pp. 541–558). Naples: Bibliopolis.Google Scholar
  17. Sacerdoti Coen, C., & Tassi, E. (2011). Formalizing overlap algebras in Matita. Mathematical Structures in Computer Science, 21, 1–31.CrossRefGoogle Scholar
  18. Sambin, G. (1987). Intuitionistic formal spaces – a first communication. In D. Skordev (Ed.), Mathematical logic and its applications (Vol. 305, pp. 187–204). New York: Plenum Press.Google Scholar
  19. Sambin, G. (1991). Per una dinamica nei fondamenti. In G. Corsi & G. Sambin (Eds.), Nuovi problemi della logica e della filosofia della scienza (pp. 163–210). Bologna: CLUEB.Google Scholar
  20. Sambin, G. (2002). Steps towards a dynamic constructivism. In P. Gärdenfors, J. Wolenski, & K. Kijania-Placek (Eds.), In the scope of logic, methodology and philosophy of science (Volume One of the XI International Congress of Logic, Methodology and Philosophy of Science, Cracow, Aug 1999, pp. 261–284). Amsterdam: Elsevier.Google Scholar
  21. Sambin, G. (2008). Two applications of dynamic constructivism: Brouwer’s continuity principle and choice sequences in formal topology. In M. van Atten, P. Boldini, M. Bourdeau, & G. Heinzmann (Eds.), One hundred years of intuitionism (1907–2007) (The Cerisy Conference, pp. 301–315). Basel: Birkhäuser.CrossRefGoogle Scholar
  22. Sambin, G. (2011). A minimalist foundation at work. In D. DeVidi, M. Hallett, & P. Clark (Eds.), Logic, mathematics, philosophy, vintage enthusiasms. Essays in honour of John L. Bell (The Western Ontario series in philosophy of science, Vol. 75, pp. 69–96). Dordrecht: Springer.Google Scholar
  23. Sambin, G. (2012). Real and ideal in constructive mathematics. In P. Dybjer, S. Lindström, E. Palmgren, & G. Sundholm (Eds.), Epistemology versus ontology, essays on the philosophy and foundations of mathematics in honour of Per Martin-Löf (Logic, epistemology and the unity of science, Vol. 27, pp. 69–85). Dordrecht: Springer.Google Scholar
  24. Sambin, G. (2015). Matematica costruttiva. In H. Hosni, G. Lolli, & C. Toffalori (Eds.), Le direzioni della ricerca logica in Italia (Edizioni della Normale, pp. 255–282). Springer.Google Scholar
  25. Sambin, G. (2017). C for constructivism. Beyond clichés. Lett. Mat. Int., 5, 1–5. CrossRefGoogle Scholar
  26. Sambin, G. (2020, to appear). Positive topology and the basic picture. New structures emerging from constructive mathematics (Oxford Logic Guides). Oxford/New York: Oxford University Press.Google Scholar
  27. Sambin, G., Battilotti, G., & Faggian, C. (2000). Basic logic: Reflection, symmetry, visibility. The Journal of Symbolic Logic, 65, 979–1013.CrossRefGoogle Scholar
  28. Weyl, H. (1918). Das Kontinuum. Kritische Untersuchungen über die Grundlagen der Analysis, Veit, Leipzig. English trans.: Pollard, S., & Bole, T. (1987). The continuum. A critical examination of the foundation of analysis. Philadelphia: Th. Jefferson University Press.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of PadovaPadovaItaly

Personalised recommendations