A New Foundational Crisis in Mathematics, Is It Really Happening?

  • Mirna DžamonjaEmail author
Part of the Synthese Library book series (SYLI, volume 407)


The article reconsiders the position of the foundations of mathematics after the discovery of the homotopy type theory HoTT. Discussion that this discovery has generated in the community of mathematicians, philosophers and computer scientists might indicate a new crisis in the foundation of mathematics. By examining the mathematical facts behind HoTT and their relation with the existing foundations, we conclude that the present crisis is not one. We reiterate a pluralist vision of the foundations of mathematics.

The article contains a short survey of the mathematical and historical background needed to understand the main tenets of the foundational issues.



Many thanks to the organisers of the FOMUS conference in July 2016 for their invitation to give a talk and to participate in the panel discussion. I would also like to thank Peter Aczel, Andrej Bauer, Mark Bezem, Thierry Coquand, Laura Crossila, Deborah Kant, Angus Mcintyre, Marco Panza, Duško Pavlović, Michael Rathjen, Christian Rosendal and Andrés Villaveces, as well as to the anonymous referee, for very useful and interesting discussions about various parts of this paper. My thanks equally go to the audiences in Paris, Nancy, Oxford, Teheran and Mexico City who have listened and contributed by their comments to the talk that accompanied the development of this paper.


  1. Aczel, P. (1999). On relating type theories and set theories. Available on author’s web site.CrossRefGoogle Scholar
  2. Awodey, S. (2010). Type theory and homotopy. arXiv:1010.1810 [math.CT].Google Scholar
  3. Bezem, M., Coquand, T., & Huber, S. (2017). The univalence axiom in cubical sets. arXiv:1710.10941 [math.LO].Google Scholar
  4. Bourbaki, N. (1966). Éléments de mathématique. Fasc. XVII. Livre I: Théorie des ensembles. Chapitre I: Description de la mathématique formelle. Chapitre II: Théorie des ensembles. Actualités Scientifiques et Industrielles, No. 1212. Troisième édition revue et corrigée. Hermann, Paris.Google Scholar
  5. Coquand, T. (2014). Théorie des types dépendants et axiome d’univalence. Presentation at the Bourbaki Seminar, Juin 2014, author’s web site.Google Scholar
  6. Crosilla, L., & Rathjen, M. (2002). Inaccessible set axioms may have little consistency strength. Annals of Pure and Applied Logic, 115(1–3), 33–70.CrossRefGoogle Scholar
  7. Diaconescu, R. (1975). Axiom of choice and complementation. Proceedings of AMS, 51, 176–178.CrossRefGoogle Scholar
  8. Džamonja, M. (2017). Set theory and its place in the foundations of mathematics-a new look at an old question. Journal of Indian Council of Philosophical Research, 34, 415–424.CrossRefGoogle Scholar
  9. Escardó, M. H. (2018). A self-contained, brief and complete formulation of Voevodsky’s univalence axiom. arXiv:1803.02294v2 [math.LO], March 2018.Google Scholar
  10. Feferman, S. (1977). Categorical foundations and foundations of category theory. In Logic, foundations of mathematics and computability theory. Proceedings of the Fifth International Congress of Logic, Methodology and Philosophy of Science, University of Western Ontario, London, ON, 1975, Part I (University of Western Ontario Series in Philosophy of Science, Vol. 9, pp. 149–169). Dordrecht: Reidel.CrossRefGoogle Scholar
  11. Fraenkel, A. A., Bar-Hillel, Y., & Lévy, A. (1973). Foundations of set theory (2nd revised ed.). Amsterdam: North-Holland.Google Scholar
  12. Frege, G. (1903). Grundgesetze der Arithmetik. Band I, II (2009 reprint ed.). Paderborn: Mentis Verlag GmbH. Begriffsschriftlich abgeleitet. [Derived in conceptual notation], Transcribed into modern formula notation and with a detailed subject index provided by Thomas Müller, Bernhard Schröder and Rainer Stuhlmann-Laeisz.Google Scholar
  13. Fremlin, D. H. (1984). Consequences of Martin’s axiom. Cambridge tracts in mathematics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  14. Girard, J.-Y. (1972). Interprétation fonctionelle et élimination des coupures de l’arithmétique d’ordre supérior. Ph.D. thesis, Université Paris VII.Google Scholar
  15. Goodman, N. D., & Myhill, J. (1974). Choice implies excluded middle. Zeitschrift fur Mathematische Logik und Grundlagen der Mathematik, 24, 461.CrossRefGoogle Scholar
  16. Grayson, D. R. (2018). An introduction to univalent foundations for mathematicians. arXiv:1711.01477v3 [math.LO], February 2018.CrossRefGoogle Scholar
  17. Harris, M. (2017). Mathematics without apology: Portrait of a problematic vocation. Princeton: Princeton University Press (2017)Google Scholar
  18. Hofmann, M. (1995). Extensional concepts in intensional type theory. Ph.D. thesis, University of Edinburgh.Google Scholar
  19. Hofmann, M., & Streicher, T. (1998). The grupoid interpretation of type theory. In G. Sambin & J. M. Smith (Eds.), Twenty five years of constructive type theory (pp. 83–112). Oxford: Clarendon Press.Google Scholar
  20. Howard, W. A. (1980). The formulae-as-types notion of construction. In J. P. Seldin & H. J. Roger (Eds.), To H.B. Curry: Essays on combinatory logic, lambda calculus and formalism (pp. 479–490). London: Academic. Original manuscript (1969).Google Scholar
  21. Hurkens, A. J. C. (1995). A simplification of Girard’s paradox. In M. Dezani-Ciancaglini & G. Plotkin (Eds.), Typed lambda calculi and applications (pp. 266–278). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  22. Kanamori, A. (2003). The higher infinite. Springer monographs in mathematics. In Large cardinals in set theory from their beginnings (Second ed.). Berlin: Springer.Google Scholar
  23. Kapulkin, C., & LeFanu Lumsdaine, P. (2012). The simplicial model of univalent foundations (after Voevodsky). arxiv:1211.2851.Google Scholar
  24. Macintyre, A. Wiles’ proof only needs PA. Private communicaton on an announced result.Google Scholar
  25. Makkai, M. (1995). First order logic with dependent sorts, with applications to category theory. Authors’s webpage.Google Scholar
  26. Martin-Löf, P. (2009). 100 years of Zermelo’s axiom of choice: What was the problem with it? In Logicism, intuitionism, and formalism (Volume 341 of Synthese Library, pp. 209–219). Dordrecht: Springer.Google Scholar
  27. Paulson, L. C. (2002). The relative consistency of the axiom of choice – Mechanized using Isabelle/ZF (Technical report UCAM-CL-TR-551). Cambridge: Cambridge University.Google Scholar
  28. The Univalent Foundations Program. (2013). Homotopy type theory: Univalent foundations of mathematics. Princeton: Institute for Advanced Study.Google Scholar
  29. Rathjen, M. (1994). The strength of some Martin–Löf type theories. Archive for Mathematical Logic, 33, 347–385.CrossRefGoogle Scholar
  30. Rathjen, M. (2017). Proof theory of constructive systems: Inductive types and univalence. In G. Jäger & W. Sieg (Eds.), Feferman on foundations – logic, mathematics, philosophy. Cham: Springer.Google Scholar
  31. Restall, G. (2002). Carnap’s tolerance, language change and logical pluralism. Journal of Philosophy, 99, 426–443.CrossRefGoogle Scholar
  32. Shulman, M. (2017). Homotopy type theory: The logic of space homotopy type theory: The logic of space homotopy type theory: The logic of space homotopy type theory: Logic of space. arXiv:1703.03007v1, March 8, 2017.Google Scholar
  33. Whitehead, A. N., & Russell, B. (1990). Principia mathematica (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  34. Wikipedia. (20xx). Homotopy type theory.
  35. Wiles, A. (1995). Modular elliptic curves and Fermat’s last theorem. Annals of Mathematics (2), 141(3), 443–551.CrossRefGoogle Scholar
  36. Zermelo, E. (1908). Untersuchungen über die Grundlagen der Mengenlehre. I. Mathematische Annalen, 65(2), 261–281.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of MathematicsUniversity of East AngliaNorwichUK
  2. 2.IHPSTUniversité Panthéon-SorbonneParisFrance

Personalised recommendations