Identification of Relevant Hashtags for Planned Events Using Learning to Rank

  • Sreekanth MadisettyEmail author
  • Maunendra Sankar Desarkar
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 976)


Lots of planned events (e.g. concerts, sports matches, festivals, etc.) keep happening across the world every day. In various applications like event recommendation, event reporting, etc. it might be useful to find user discussions related to such events from social media. Identification of event related hashtags can be useful for this purpose. In this paper, we focus on identifying the top hashtags related to a given event. We define a set of features for (event, hashtag) pairs, and discuss ways to obtain these feature scores. A linear aggregation of these scores is used to finally output a ranked list of top hashtags for the event. The aggregation weights of the features are obtained using a learning to rank algorithm. We establish the superiority of our method by performing detailed experiments on a large dataset containing multiple categories of events and related tweets.


Social media Information Retrieval Learning to rank Hashtags Twitter 


  1. 1.
    Hürriyetoglu, A., Oostdijk, N., van den Bosch, A.: Estimating time to event from tweets using temporal expressions (2014)Google Scholar
  2. 2.
    Jackoway, A., Samet, H., Sankaranarayanan, J.: Identification of live news events using Twitter. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Location-Based Social Networks, pp. 25–32. ACM (2011)Google Scholar
  3. 3.
    Khurdiya, A., Dey, L., Mahajan, D., Verma, I.: Extraction and compilation of events and sub-events from twitter. In: Proceedings of the 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology, vol. 1, pp. 504–508. IEEE Computer Society (2012)Google Scholar
  4. 4.
    Cui, A., Zhang, M., Liu, Y., Ma, S., Zhang, K.: Discover breaking events with popular hashtags in Twitter. In: Proceedings of the 21st ACM international conference on Information and Knowledge Management, pp. 1794–1798. ACM (2012)Google Scholar
  5. 5.
    Ozdikis, O., Senkul, P., Oguztuzun, H.: Semantic expansion of hashtags for enhanced event detection in Twitter. In: Proceedings of the 1st International Workshop on Online Social Systems. Citeseer (2012)Google Scholar
  6. 6.
    Kywe, S.M., Hoang, T.-A., Lim, E.-P., Zhu, F.: On recommending hashtags in Twitter networks. In: Aberer, K., Flache, A., Jager, W., Liu, L., Tang, J., Guéret, C. (eds.) SocInfo 2012. LNCS, vol. 7710, pp. 337–350. Springer, Heidelberg (2012). Scholar
  7. 7.
    Zangerle, E., Gassler, W., Specht, G.: Recommending#-tags in Twitter. In: Proceedings of the Workshop on Semantic Adaptive Social Web (SASWeb 2011), CEUR Workshop Proceedings, vol. 730, pp. 67–78 (2011)Google Scholar
  8. 8.
    Godin, F., Slavkovikj, V., De Neve, W., Schrauwen, B., Van de Walle, R.: Using topic models for Twitter hashtag recommendation. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 593–596. ACM (2013)Google Scholar
  9. 9.
    She, J., Chen, L.: Tomoha: Topic model-based hashtag recommendation on twitter. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 371–372. ACM (2014)Google Scholar
  10. 10.
    Sedhai, S., Sun, A.: Hashtag recommendation for hyperlinked tweets. In: Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 831–834. ACM (2014)Google Scholar
  11. 11.
    Shi, B., Ifrim, G., Hurley, N.: Learning-to-rank for real-time high-precision Hashtag recommendation for streaming news. In: Proceedings of the 25th International Conference on World Wide Web, International World Wide Web Conferences Steering Committee, pp. 1191–1202 (2016)Google Scholar
  12. 12.
    Wang, X., Tokarchuk, L., Cuadrado, F., Poslad, S.: Exploiting hashtags for adaptive microblog crawling. In: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 311–315. ACM (2013)Google Scholar
  13. 13.
    Dovgopol, R., Nohelty, M.: Twitter hash tag recommendation. arXiv preprint arXiv:1502.00094 (2015)
  14. 14.
    Madisetty, S., Desarkar, M.S.: Exploiting meta attributes for identifying event related Hashtags. In: Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - (Volume 1: KDIR), 1–3 November 2017, Funchal, Madeira, Portugal, pp. 238–245 (2017)Google Scholar
  15. 15.
    Kowald, D., Pujari, S.C., Lex, E.: Temporal effects on Hashtag reuse in twitter: a cognitive-inspired Hashtag recommendation approach. In: Proceedings of the 26th International Conference on World Wide Web, International World Wide Web Conferences Steering Committee, pp. 1401–1410 (2017)Google Scholar
  16. 16.
    Dey, K., Shrivastava, R., Kaushik, S., Subramaniam, L.V.: Emtagger: a word embedding based novel method for Hashtag recommendation on Twitter. arXiv preprint arXiv:1712.01562 (2017)
  17. 17.
    Gong, Y., Zhang, Q., Han, X., Huang, X.: Phrase-based hashtag recommendation for microblog posts. Sci. China Inf. Sci. 60, 012109 (2017)CrossRefGoogle Scholar
  18. 18.
    Cheung, K.C., Cheung, T.K.Y.: Recommendation of hashtags in social twitter network. Int. J. Data Anal. Tech. Strat. 9, 222–236 (2017)CrossRefGoogle Scholar
  19. 19.
    Ben-Lhachemi, N., Nfaoui, E.H.: An extended spreading activation technique for hashtag recommendation in microblogging platforms. In: Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics, p. 16. ACM (2017)Google Scholar
  20. 20.
    Alsini, A., Datta, A., Li, J., Huynh, D.: Empirical analysis of factors influencing twitter hashtag recommendation on detected communities. In: Cong, G., Peng, W.-C., Zhang, W.E., Li, C., Sun, A. (eds.) ADMA 2017. LNCS (LNAI), vol. 10604, pp. 119–131. Springer, Cham (2017). Scholar
  21. 21.
    Tran, V.C., Hwang, D., Nguyen, N.T.: Hashtag recommendation approach based on content and user characteristics. Cybern. Syst. 49(5–6), 368–383 (2018)CrossRefGoogle Scholar
  22. 22.
    Ma, J., Feng, C., Shi, G., Shi, X., Huang, H.: Temporal enhanced sentence-level attention model for hashtag recommendation. CAAI Trans. Intell. Technol. 3, 95–100 (2018)CrossRefGoogle Scholar
  23. 23.
    Ben-Lhachemi, N., Nfaoui, E.H.: Using tweets embeddings for hashtag recommendation in Twitter. Proc. Comput. Sci. 127, 7–15 (2018)CrossRefGoogle Scholar
  24. 24.
    Becker, H., Iter, D., Naaman, M., Gravano, L.: Identifying content for planned events across social media sites. In: Proceedings of the fifth ACM International Conference on Web Search and Data Mining, pp. 533–542. ACM (2012)Google Scholar
  25. 25.
    Joachims, T.: Training linear SVMs in linear time. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 217–226. ACM (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sreekanth Madisetty
    • 1
    Email author
  • Maunendra Sankar Desarkar
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology HyderabadHyderabadIndia

Personalised recommendations