Advertisement

A Modified Version of AlQuAnS: An Arabic Language Question Answering System

  • Ahmed Abdelmegied
  • Yasmin Ayman
  • Ahmad Eid
  • Nagwa El-Makky
  • Ahmed Fathy
  • Ghada Khairy
  • Khaled Nagi
  • Mohamed NabilEmail author
  • Mohammed Yousri
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 976)

Abstract

The challenges of the Arabic language and the lack of resources have made it difficult to provide Arabic Question Answering (QA) systems with high accuracy. These challenges motivated us to propose AlQuAnS-an Arabic Language Question Answering System that gives promising accuracy results. This paper proposes a modified version of AlQuAnS with a higher accuracy. The proposed system enhances the accuracy of the question classification, semantic interpreter and answer extraction modules. The provided performance evaluation study shows that our modified system outperforms other existing Arabic QA systems, especially with the newly introduced answer extraction module.

Keywords

Arabic question answering systems Arabic morphological analysis Question analysis Question classification Answer extraction Semantic analysis Question expansion 

References

  1. 1.
    Benajiba, Y., Rosso, P.: Arabic Question Answering. Diploma of Advanced Studies. Technical University of Valencia, Spain (2007)Google Scholar
  2. 2.
    Benajiba, Y., Rosso, P.: Anersys 2.0: conquering the NER task for the Arabic language by combining the maximum entropy with pos-tag information. In: Proceedings of Workshop on Natural Language-Independent Engineering, IICAI-2007 (2007)Google Scholar
  3. 3.
    Benajiba, Y., Rosso, P., BenedíRuiz, J.M.: ANERsys: an Arabic named entity recognition system based on maximum entropy. In: Gelbukh, A. (ed.) CICLing 2007. LNCS, vol. 4394, pp. 143–153. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70939-8_13CrossRefGoogle Scholar
  4. 4.
    Nabil, M., et al.: AlQuAnS – an Arabic language question answering system. In: Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, pp. 144-154 (2017).  https://doi.org/10.5220/0006602901440154. ISBN 978-989-758-271-4
  5. 5.
    Fleischman, M., Hovy, E., Echihabi, A.: Offline strategies for online question answering: answering questions before they are asked. In: Proceedings of the 41st Annual Meeting on Association for Computational Linguistics - Volume 1, Stroudsburg, PA, USA, pp. 1–7. ACL 2003. Association for Computational Linguistics (2003)Google Scholar
  6. 6.
    Zhang, D., Lee, W.S.: A web-based question answering system. In: Proceedings of the SMA Annual Symposium 2003. Singapore (2003)Google Scholar
  7. 7.
    Kaiser, M.: Answer sentence retrieval by matching dependency paths acquired from question/answer sentence pairs. In: Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2010, Stroudsburg, PA, USA, pp. 88–98. Association for Computational Linguistics (2012)Google Scholar
  8. 8.
    Ittycheriah, A., Franz, M., Zhu, W.-J., Ratnaparkhi, A., Mammone, R.J.: IBM’s statistical question answering system. In: Proceedings of the Text Retrieval Conference. TREC-9 (2000)Google Scholar
  9. 9.
    Martin, A.I., Franz, M., Roukos, S.: IBM’s statistical question answering system-TREC-10. In: Proceedings of the 10th Text Retrieval Conference. TREC-10 (2001)Google Scholar
  10. 10.
    Ittycheriah, A., Roukos, S.: IBM’s statistical question answering system-TREC-11. IBM Thomas J Watson Research Center, Yorktown Heights, NY (2006)Google Scholar
  11. 11.
    Hammo, B., Abu-Salem, H., Lytinen, S.: QARAB: a question answering system to support the Arabic language. In: Proceedings of the ACL-02 Workshop on Computational Approaches to Semitic Languages, SEMITIC 2002, Stroudsburg, PA, USA, pp. 1–11. Association for Computational Linguistics (2002)Google Scholar
  12. 12.
    Trigui, O., Belguith, L.H., Rosso, P., Amor, H.B., Gafsaoui, B.: Arabic QA4MRE at CLEF 2012: Arabic question answering for machine reading evaluation. In: CLEF (Online Working Notes/Labs/Workshop) (2012)Google Scholar
  13. 13.
    Ezzeldin, A.M., Kholief, M.H., El-Sonbaty, Y.: ALQASIM: Arabic language question answer selection in machines. In: Forner, P., Müller, H., Paredes, R., Rosso, P., Stein, B. (eds.) CLEF 2013. LNCS, vol. 8138, pp. 100–103. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40802-1_12CrossRefGoogle Scholar
  14. 14.
    Trigui, O., Belguith, H., Rosso, P.: DefArabicQA: Arabic definition question answering system. In: Workshop on Language Resources and Human Language Technologies for Semitic Languages, 7th LREC, pp. 40–45. Valletta, Malta (2010)Google Scholar
  15. 15.
    Abouenour, L., Bouzouba, K., Rosso, P.: An evaluated semantic query expansion and structure-based approach for enhancing Arabic question/answering. Int. J. Inf. Commun. Technol. 3(3), 37–51 (2010)Google Scholar
  16. 16.
    Abdelnasser, H., et al.: Al-bayan: an Arabic question answering system for the holy Quran. In: Arabic Natural Language Processing Workshop, p. 57, Qatar (2014)Google Scholar
  17. 17.
    Pasha, A., et al.: MADAMIRA: a fast, comprehensive tool for morphological analysis and disambiguation of arabic. In: LREC, vol. 14, pp. 1094–1101 (2014)Google Scholar
  18. 18.
    Habash, N., Rambow, O., Roth, R.: MADA+TOKAN: a toolkit for Arabic tokenization, diacritization, morphological disambiguation, POS tagging, stemming and lemmatization. In: Proceedings of the 2nd International Conference on Arabic Language Resources and Tools (MEDAR), Cairo, Egypt, vol. 41, p. 62, April 2009Google Scholar
  19. 19.
    Diab, M.: Second generation AMIRA tools for Arabic processing: fast and robust tokenization, POS tagging, and base phrase chunking. In: 2nd International Conference on Arabic Language Resources and Tools, vol. 110 (2009)Google Scholar
  20. 20.
    Elkateb, S., et al.: Arabic WordNet and the challenges of Arabic. In: Proceedings of Arabic NLP/MT Conference, London, UK (2006)Google Scholar
  21. 21.
    Fellbaum, C.: WordNet and wordnets. In: Brown, K., et al. (eds.) Encyclopedia of Language and Linguistics, 2nd edn, pp. 665–670. Elsevier, Oxford (2005)Google Scholar
  22. 22.
    Niles, I., Pease, A.: Mapping WordNet to the sumo ontology. In: Proceedings of the IEEE International Knowledge Engineering Conference, pp. 23–26 (2003)Google Scholar
  23. 23.
    Li, X., Roth, D.: Learning question classifiers. In: Proceedings of the 19th International Conference on Computational Linguistics-Volume 1, pp. 1–7. Association for Computational Linguistics (2002)Google Scholar
  24. 24.
    Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-based explicit semantic analysis. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, vol. 6, p. 12 (2007)Google Scholar
  25. 25.
    Gabrilovich, E., Markovitch, S.: Wikipedia-based semantic interpretation for natural language processing. J. Artif. Intell. Res. 34, 443–498 (2009)CrossRefGoogle Scholar
  26. 26.
    Abdelali, A., Darwish, K., Durrani, N., Mubarak, H.: Farasa: a fast and furious segmenter for Arabic. In: NAACL-2016 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ahmed Abdelmegied
    • 1
  • Yasmin Ayman
    • 1
  • Ahmad Eid
    • 1
  • Nagwa El-Makky
    • 1
  • Ahmed Fathy
    • 1
  • Ghada Khairy
    • 1
  • Khaled Nagi
    • 1
  • Mohamed Nabil
    • 1
    Email author
  • Mohammed Yousri
    • 1
  1. 1.Computer and Systems Engineering Department, Faculty of EngineeringAlexandria UniversityAlexandriaEgypt

Personalised recommendations