Advertisement

Background

  • Joey Sing Yee TanEmail author
  • Amandeep S. Sidhu
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 832)

Abstract

During the early stage of surgical training, most of the surgical trainings are practiced via animals, cadavers and real patient. Each of these method faces challenges and obstacles because animals’ organs or soft tissues do not represent the human anatomy accurately. Moreover, the cadaver’s soft tissues properties are thoroughly different with the real living soft tissues in terms of anisotropic, nonlinearity, inhomogeneous and viscoelasticity.

Bibliography

  1. Abdelazim, T., & Malik, O. P. (2003). An adaptive power system stabilizer using on-line self-learning fuzzy systems. In Proceedings of IEEE Power Engineering Society General Meeting, Toronto, ON, Canada (pp. 1715–1720).Google Scholar
  2. Abrahamson, S., Denson, J., & Wolf, R. (2004). Effectiveness of a simulator in training anesthesiology residents. Quality and Safety in Health Care, 395–397.Google Scholar
  3. An, D. S. (2011). Designing deformable models of soft tissue for virtual surgery planning and simulation using the Mass-Spring Model. Ph.D. Dissertation. University of Navarra.Google Scholar
  4. Aoul, Y. H., Nafaa, A., Negru, D., & Mehaoua, A. (2004). FAFC: Fast adaptive fuzzy AQM controller for TCP/IP networks. In Proceedings of IEEE Global Telecommunications Conference, Dallas, TX (pp. 1319–1323).Google Scholar
  5. Azar, F. S., Metaxas, D. N., & Schnall, M. D. (2001). A deformable finite element model of the breast for predicting mechanical deformations under external perturbations. Academic Radiology, 8, 965–975.zbMATHCrossRefGoogle Scholar
  6. Azar, F. S., Metaxas, D. N., & Schnall, M. D. (2002). Methods for modeling and predicting mechanical deformations of the breast under external perturbations. Medical Image Analysis, 6, 1–27.zbMATHCrossRefGoogle Scholar
  7. Bai, Y., Zhuang, H. Q., & Roth, Z. S. (2005). Fuzzy logic control to suppress noises and coupling effects in a laser tracking system. IEEE Transactions on Control Systems Technology, 13(1), 113–121.CrossRefGoogle Scholar
  8. Barach, P., & Johnson, J.K. (2009). Reducing variation in adverse events during the academic year. British Medical Journal, 339(1): p. 3949.Google Scholar
  9. Barrero, F., Gonzalez, A., Torralba, A., Galvan, E., & Franquelo, L. G. (2002). Speed control of induction motors using a novel fuzzy sliding-mode structure. IEEE Transactions on Fuzzy Systems, 10(3), 375–383.CrossRefGoogle Scholar
  10. Barry-Issenberg, S., McGaghie, W., Petrusa, E., et al. (2005). Features and uses of high-fidelity medical simulations that lead to effective learning: A BEME systematic review. Medical Teacher, 27(1), 10–28.CrossRefGoogle Scholar
  11. Baturone, I., Moreno-Velo, F. J., Sanchez-Solano, S., & Ollero, A. (2004). Automatic design of fuzzy controllers for car-like autonomous robots. IEEE Transactions on Fuzzy Systems, 12(4), 447–465.CrossRefGoogle Scholar
  12. Baumann, R., Glauser, D., Tappy, D., Baur, C., & Clavel, R. (1996). Force feedback for virtual reality based minimally invasive surgery simulator. Health Technology and Informatics, 29, 564–579.Google Scholar
  13. Baur, C., Guzzoni, D., & Georg, O. (1998). Virgy: A virtual reality surgical trainer and force feedback based endoscopic surgery simulator. In Medicine Meets Virtual Reality (MMVR 6).Google Scholar
  14. Berkley, J., Turkiyyah, G., & Berg, D. (2004). Real-time finite element modelling for surgery simulation: An application to virtual suturing. IEEE Transactions on Visualization and Computer Graphics, 10(3), 314–325.CrossRefGoogle Scholar
  15. Bhat, K. S., Twigg, C. D., Hodgins, J. K., Khosla, P. K., Popovic, Z., & Seitz, S. M. (2003). Estimating cloth simulation parameters from video. In D. Breen & M. C. Lin (Eds.), Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation (pp. 37–51).Google Scholar
  16. Bianchi, G., Harders, M., & Szekely, G. (2003). Mesh topology identification for mass-spring models. In MICCAI 2003 (Vol. 1, pp. 50–58).Google Scholar
  17. Bianchi, G., Solenthaler, B., Szekely, G., & Harders, M. (2004). Simultaneous topology and stiffness identification for mass-spring models based on FEM reference deformations. In Medical Image Computing and Computer-Assisted Intervention (MICCAI 2004) (Vol. 2, pp. 293–301).Google Scholar
  18. Bielser, D., & Gross, M. H. (2000). Interactive simulation of surgical cuts. In Proceedings of Pacific Graphics 2000 (pp. 116–125). IEEE Computer Society Press.Google Scholar
  19. Bonissone, P. P., Badami, V., Chiang, K. H., Khedkar, P. S., Marcelle, K. W., & Schutten, M. J. (1995). Industrial applications of fuzzy logic at general electric. Proceedings of the IEEE, 38(3), 450–465.CrossRefGoogle Scholar
  20. Boroushaki, M., Ghofrani, M. B., Lucas, C., & Yazdanpanah, M. J. (2003). Identification and control of a nuclear reactor core (VVER) using recurrent neural networks and fuzzy systems. IEEE Transactions on Nuclear Science, 50(1), 159–174.CrossRefGoogle Scholar
  21. Bosdogan, C., Ho, C., & Srinivasan, M. A. (2001). Virtual environments for medical training: Graphical and haptic simulation of laparoscopic common bile duct exploration. IEEE/ASME Transactions on Mechatronics, 6, 269–285.CrossRefGoogle Scholar
  22. Boukezzoula, R., Galichet, S., & Foulloy, L. (2004). Observer-based fuzzy adaptive control for a class of nonlinear systems: Real-time implementation for a robot wrist. IEEE Transactions on Control Systems Technology, 12(3), 340–351.CrossRefGoogle Scholar
  23. Bro-Nielson, M. (1996). Surgery simulation using fast finite elements. In VBC’96: Proceedings of the 4th International Conference on Visualization in Biomedical Computing. London, UK (pp. 529–534). Berlin: Springer.Google Scholar
  24. Campello, R. J. G. B., Meleiro, L. A. C., & Amaral, W. C. (2004). Control of a bioprocess using orthonormal basis function fuzzy models. In Proceedings of IEEE International Conference on Fuzzy Systems, Budapest, Hungary (pp. 801–806).Google Scholar
  25. Chang, Y. C., & Chen, B. S. (2005). Intelligent robust tracking controls for holonomic and nonholonomic mechanical systems using only position measurements. IEEE Transactions on Fuzzy Systems, 13(4), 491–507.CrossRefGoogle Scholar
  26. Chen, C. L., Feng, G., Sun, D., & Zhu, Y. (2005). H-infinity output feedback control of discrete-time fuzzy systems with application to chaos control. IEEE Transactions on Fuzzy Systems, 13(4), 531–543.CrossRefGoogle Scholar
  27. Chen, B., & Liu, X. (2005). Fuzzy approximate disturbance decoupling of MIMO nonlinear systems by backstepping and application to chemical processes. IEEE Transactions on Fuzzy Systems, 13(6), 832–847.CrossRefGoogle Scholar
  28. Chen, B. S., Tsai, C. L., & Chen, D. S. (2003). Robust H and mixed H2/H filters for equalization designs of nonlinear communication systems: fuzzy interpolation approach. IEEE Transactions on Fuzzy Systems, 11(3), 384–398.Google Scholar
  29. Chen, B. S., Yang, Y. S., Lee, B. K., & Lee, T. H. (2003b). Fuzzy adaptive predictive flow control of ATM network traffic. IEEE Transactions on Fuzzy Systems, 11(4), 568–581.CrossRefGoogle Scholar
  30. Chiu, S., Chand, S., Moore, D., & Chaudhary, A. (1991). Fuzzy logic for control of roll and moment for a flexible wing aircraft. IEEE Control Systems Magazine, 11(1), 42–48.CrossRefGoogle Scholar
  31. Choi, K. S. (2010). Toward realistic virtual surgical simulation: Using heuristically parametrized anisotropic mass-spring model to simulate tissue mechanical responses. In 2010 2nd International Conference on Education Technology and Computer (ICETC) (pp. V1-446–V1-450), 22–24 June 2010.Google Scholar
  32. Chung, J. H., Rajagopal, V., Nielsen, P. M. E., & Nash, M. P. (2008). A biomechanical model of mammographic compressions. Biomechanics and Modeling in Mechanobiology, 2008(7), 43–52.CrossRefGoogle Scholar
  33. Cooke, M., Irby, D., Sullivan, W., et al. (2006). American medical education 100 years after the Flexner report. New England Journal of Medicine, 355, 1339–1344.CrossRefGoogle Scholar
  34. Cotin, S., Delingette, H., & Ayache, N. (1999). Real-time elastic deformations of soft tissues for surgery simulation. IEEE Transactions on Visualization and Computer Graphics, 5, 62–73.Google Scholar
  35. Cover, S. A., Ezquerra, N. F., O’Brien, J. F., Rowe, R., Gadacz, T., & Palm, E. (1993). Interactively deformable models for surgery simulation. IEEE Computer Graphics and Application, 13(6), 68–75.Google Scholar
  36. De, S., & Srinivasan, M. A. (1999). Thin walled models for haptic and graphical rendering of soft tissues in surgical simulations. In J. D. Westwood et al. (Eds.), Medicine Meets Virtual Reality (pp. 94–99). IOS Press.Google Scholar
  37. Delingette, H., Cotin, S., & Ayache, N. (1999). A hybrid elastic model allowing real-time cutting, deformations and force-feedback for surgery training and simulation. In Proceedings Computer Animation (pp. 1–12).Google Scholar
  38. Delp, S., Loan, P., Basdogan, C., & Rosen, J. (1997). Surgical simulation: An emerging technology for training in emergency medicine. Presence: Teleoperators & Virtual Environments, 6(2): 147–159.Google Scholar
  39. Deussen, O., Kobbelt, L., & Tücke, P. (1995). Using simulated annealing to obtain good approximations of deformable bodies. In D. Terzopoulost & D. Thalmann (Eds.), Proceedings of the EuroGraphics Workshop Computer Animation and Simulation. New York: Springer.Google Scholar
  40. DiMaio, S. P., & Salcudean, S. E. (2002). Simulated interactive needle insertion. In: Proceeding of 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (pp. 344–351).Google Scholar
  41. Etheredge, C. E. (2011). A parallel mass-spring model for soft tissue simulation with haptic rendering in CUDA. In 15th Twente Student Conference on IT (p. 15).Google Scholar
  42. Farinwata, S. S., Pirovolou, D., & Vachtsevanos, G. J. (1994). On input-output stability analysis of a fuzzy controller for a missile autopilot’s yaw axis. In Proceedings of 3rd IEEE International Conference on Fuzzy Systems, Orlando, FL (pp. 930–935).Google Scholar
  43. Feng, G. (2006). A survey on analysis and design of model-based fuzzy control systems. IEEE Transactions on Fuzzy Systems, 14(5).CrossRefGoogle Scholar
  44. Flores, A., Saez, D., Araya, J., Berenguel, M., & Cipriano, A. (2005). Fuzzy predictive control of a solar power plant. IEEE Transactions on Fuzzy Systems, 13(1), 58–68.CrossRefGoogle Scholar
  45. Frey, C. W., & Kuntze, H. B. (2001). A neuro-fuzzy supervisory control system for industrial batch processes. IEEE Transactions on Fuzzy Systems, 9(4), 570–577.CrossRefGoogle Scholar
  46. Fung, Y. C. (1993). Biomechanics: Mechanical properties of living tissues. New York, NY, USA: Springer.CrossRefGoogle Scholar
  47. Georgii, J., & Westermann, R. (2005). Mass-spring systems on the GPU. Simulation Modelling Practice and Theory, 13(8) (11//2005), 693–702.Google Scholar
  48. Grantcharov, T., Kristiansen, V., Bendix, J., et al. (2004). Randomized clinical trial of virtual reality simulation for laparoscopic skills training. British Journal of Surgery, 91(2), 146–150.CrossRefGoogle Scholar
  49. Guesmi, T., Adballah, H. H., & Toumi, A. (2004). Transient stability fuzzy control approach for power systems. In Proceedings of IEEE International Conference on Industrial Technology, Hammamet, Tunisia (pp. 1676–1681).Google Scholar
  50. Guillemin, P. (1996). Fuzzy logic applied to motor control. IEEE Transactions on Industry Applications, 32(1), 51–56.MathSciNetCrossRefGoogle Scholar
  51. Hagras, H. A. (2004). A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Transactions on Fuzzy Systems, 12(4), 524–539.CrossRefGoogle Scholar
  52. Haller, G., Myles, P. S., Taffe, P., et al. (2009). Rate of undesirable events at beginning of academic year: Retrospective cohort study. British Medical Journal, 339(1), 3974.CrossRefGoogle Scholar
  53. Hammer, P. E., Sacks, M. S., Nido, P. J., & Howe, R. D. (2011). Mass-spring model for simulation of heart valve tissue mechanical behavior. Annals of Biomedical Engineering, 39(6), 1668–1679.CrossRefGoogle Scholar
  54. Haruki, T., & Kikuchi, K. (1992). Video camera system using fuzzy logic. IEEE Transactions on Consumer Electronics, 38(3), 624–634.CrossRefGoogle Scholar
  55. Hong, S. K., & Langari, R. (2000). Robust fuzzy control of a magnetic bearing system subject to harmonic disturbances. IEEE Transactions on Control Systems Technology, 8(2), 366–371.CrossRefGoogle Scholar
  56. Horiuchi, J. I., & Kishimoto, M. (2002). Application of fuzzy control to industrial bioprocesses in Japan. Fuzzy Sets and Systems, 128(1), 117–124.MathSciNetCrossRefGoogle Scholar
  57. Hu, T. (2006). Reality-based soft tissue probing: Experiments and computational model for application to minimally invasive surgery. Dissertation for Degree of Doctor of Philosophy. Drexel University.Google Scholar
  58. Huang, S. J., & Lin, W. C. (2003). Adaptive fuzzy controller with sliding surface for vehicle suspension control. IEEE Transactions on Fuzzy Systems, 11(4), 550–559.CrossRefGoogle Scholar
  59. Hwang, C. L., & Kuo, C. Y. (2001). A stable adaptive fuzzy sliding-mode control for affine nonlinear systems with application to four-bar linkage systems. IEEE Transactions on Fuzzy Systems, 9(2), 238–252.MathSciNetCrossRefGoogle Scholar
  60. Indelicato, D. (1995). Virtual reality in surgical training, 21–24.Google Scholar
  61. Jojic, N., & Huang, T. S. (1997). Estimating cloth draping parameters from range data. In Proceedings of International Workshop on Synthetic-Natural Hybrid Coding and Three Dimensional Imaging (pp. 73–76).Google Scholar
  62. Juang, C. F., & Hsu, C. H. (2005). Temperature control by chip-implemented adaptive recurrent fuzzy controller designed by evolutionary algorithm. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(11), 2376–2384.Google Scholar
  63. Kadmiry, B., & Driankov, D. (2004). A fuzzy gain-scheduler for the attitude control of an unmanned helicopter. IEEE Transactions on Fuzzy Systems, 12(4), 502–515.zbMATHCrossRefGoogle Scholar
  64. Kandel, A., Manor, O., Klein, Y., & Fluss, S. (1999). ATM traffic management and congestion control using fuzzy logic. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 29(3), 474–480.Google Scholar
  65. Kickert, W. J. M., & Van Nauta Lemke, H. R. (1976). Application of a fuzzy logic controller in a warm water plant. Automatica, 12, 301–308.Google Scholar
  66. Kiguchi, K., Tanaka, T., & Fukuda, T. (2004). Neuro-fuzzy control of a robotic exoskeleton with EMG signals. IEEE Transactions on Fuzzy Systems, 12(4), 481–490.CrossRefGoogle Scholar
  67. Kim, C. J. (1997). An algorithmic approach for fuzzy inference. IEEE Transactions on Fuzzy Systems, 5(4).CrossRefGoogle Scholar
  68. Kim, E. (2004). Output feedback tracking control of robot manipulators with model uncertainty via adaptive fuzzy logic. IEEE Transactions on Fuzzy Systems, 12(3), 368–378.CrossRefGoogle Scholar
  69. Kim, E., & Lee, S. (2005). Output feedback tracking control of MIMO systems using a fuzzy disturbance observer and its application to the speed control of a PM synchronous motor. IEEE Transactions on Fuzzy Systems, 13(6), 725–741.CrossRefGoogle Scholar
  70. King, P. J., & Mamdani, E. H. (1977). The application of fuzzy control systems to industrial process. Automatica, 13, 235–242.CrossRefGoogle Scholar
  71. Ko, H. S., & Niimura, T. (2002). Power system stabilization using fuzzy neural hybrid intelligent control. In Proceedings of IEEE International Symposium on Intelligent Control, Vancouver, BC, Canada (pp. 879–884).Google Scholar
  72. Kornblum, R. J., & Tribus, M. (1970). The use of Bayesian inference in the design of an endpoint control system for the basic oxygen steel furnace. IEEE Transactions on Systems Science and Cybernetics, SMC-6(2), 339–348.Google Scholar
  73. Kuhnapfel, U. G., & Neisius, B. (1993). CAD-based graphical computer simulation in endoscopic surgery. Endoscopic Surgery, 1, 369–378.Google Scholar
  74. Kumar, S. (2005). A review of smart volume controllers for consumer electronics. IEEE Transactions on Consumer Electronics, 51(2), 600–605.CrossRefGoogle Scholar
  75. Kwok, H. F., Linkens, D. A., Mahfouf, M., & Mills, G. H. (2004). SIVA: A hybrid knowledge-and-model-based advisory system for intensive care ventilators. IEEE Transactions on Information Technology in Biomedicine, 8(2), 161–172.CrossRefGoogle Scholar
  76. Larkin, L. I. (1985). A fuzzy logic controller for aircraft flight control. In M. Sugeno (Ed.), Industrial applications of fuzzy control (pp. 87–104). Amsterdam, The Netherlands: North-Holland.Google Scholar
  77. Larsen, P. M. (1980). Industrial applications of fuzzy logic control. International Journal of Man-Machine Studies, 12, 3–10.CrossRefGoogle Scholar
  78. Lee, C. C. (1990a). Fuzzy logic in control systems: Fuzzy logic controller—Part I. IEEE Transactions on Systems, Man, and Cybernetics, 20(2), 404–418.MathSciNetzbMATHCrossRefGoogle Scholar
  79. Lee, C. C. (1990b). Fuzzy logic in control systems: Fuzzy logic controller—Part II. IEEE Transactions on Systems, Man, and Cybernetics, 20(2), 419–435.MathSciNetzbMATHCrossRefGoogle Scholar
  80. Lee, S. H., & Bien, Z. (1994). Design of expandable fuzzy inference processor. IEEE Transactions on Consumer Electronics, 40(2), 171–175.CrossRefGoogle Scholar
  81. Lee, Y. M., Jang, S. I., Chung, K. W., Lee, D. Y., Kim, W. C., & Lee, C. W. (1994). A fuzzy-control processor for automatic focusing. IEEE Transactions on Consumer Electronics, 40(2), 138–144.CrossRefGoogle Scholar
  82. Lee, S. H., & Lim, J. T. (2001). Multicast ABR service in ATM networks using a fuzzy-logic-based consolidation algorithm. In: Proceedings. Institute of Electrical Engineering and Communications (Vol. 148, pp. 8–13).Google Scholar
  83. Leon, C. A. D., Eliuk, S., & Gomez, H. T. (2010). Simulating soft tissues using a GPU approach of the mass-spring model. Paper presented at the Virtual Reality Conference (VR), March, 20–24 2010. IEEE.Google Scholar
  84. Li, W., Chang, X. G., Farrell, J., & Wahl, F. M. (2001). Design of an enhanced hybrid fuzzy P + ID controller for a mechanical manipulator. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 31(6), 938–945.Google Scholar
  85. Li, T. H. S., Chang, S. J., & Tong, W. (2004). Fuzzy target tracking control of autonomous mobile robots by using infrared sensors. IEEE Transactions on Fuzzy Systems, 12(4), 491–501.CrossRefGoogle Scholar
  86. Lian, K. Y., Chiu, C. S., Chiang, T. S., & Liu, P. (2001). LMI-based fuzzy chaotic synchronization and communications. IEEE Transactions on Fuzzy Systems, 9(4), 539–553.CrossRefGoogle Scholar
  87. Lin, C. M., & Hsu, C. F. (2003). Self-learning fuzzy sliding-mode control for antilock braking systems. IEEE Transactions on Control Systems Technology, 11(2), 273–278.MathSciNetCrossRefGoogle Scholar
  88. Lloyd, B., Székely, G., & Harders, M. (2007). Identification of spring parameters for deformable object simulation. Transactions on Visualization and Computer Graphics, 13(5), 1081–1094.CrossRefGoogle Scholar
  89. Maciel, A., Boulic, R., & Thalmann, D. (2003). Deformable tissue parameterized by properties of real biological tissue. Proceedings International Symposium on Surgery Simulation and Soft Tissue Modelling, 2003, 74–87.CrossRefGoogle Scholar
  90. Mamdani, E. H. (1974). Application of fuzzy algorithms for simple dynamic plant. Proceedings of the Institution of Electrical Engineers, 121, 1585–1588.CrossRefGoogle Scholar
  91. Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7, 1–13.zbMATHCrossRefGoogle Scholar
  92. Mannani, A., & Talebi, H. A. (2003). A fuzzy Lyapunov-based control strategy for a macro-micro manipulator. In Proceedings of IEEE Conference on Control Applications, Istanbul, Turkey (pp. 368–373).Google Scholar
  93. Mar, J., & Lin, F. J. (2001). An ANFIS controller for the car-following collision prevention system. IEEE Transactions on Vehicular Technology, 50(4), 1106–1113.CrossRefGoogle Scholar
  94. Meseure, P., & Chaillou, C. (1997). Deformable body simulation with adaptative subdivision and cuttings. In Proceedings of the WSCG’97 Conference (pp. 361–370).Google Scholar
  95. Munasinghe, S. R., Kim, M. S., & Lee, J. J. (2005). Adaptive neurofuzzy controller to regulate UTSG water level in nuclear power plants. IEEE Transactions on Nuclear Science, 52(1), 421–429.CrossRefGoogle Scholar
  96. Murakami, S., & Maeda, M. (1985). Application of fuzzy controller to automobile speed control system. In M. Sugeno (Ed.), Industrial applications of fuzzy control. Amsterdam, The Netherlands: North-Holland (pp. 105–124).Google Scholar
  97. Nakagaki, N., Bando, Y., Mori, T., Torikoshi, S., & Suzuki, S. (1994). Wide aspect TV receiver with aspect detection and non-linear control for picture quality. IEEE Transactions on Consumer Electronics, 40(3), 743–752.CrossRefGoogle Scholar
  98. Natsupakpong, S. (2010). Physically based modeling and simulation for virtual environment. Dissertation for Degree of Doctor of Philosophy. Case Western Reserve University.Google Scholar
  99. Nealen, A., Muller, M., Keiser, R., Boxerman, E., & Carlson, M. (2005). Physically based deformable models in computer graphics. Eurographics State of the Art Report (pp. 71–94).Google Scholar
  100. Nedel, L. P., & Thalmann, D. (1998). Real time muscle deformations using mass-spring systems. Computer Graphics International, 156–165.Google Scholar
  101. Niasar, A. H., Moghbeli, H., & Kazemi, R. (2003).Yaw moment control via emotional adaptive neuro-fuzzy controller for independent rear wheel drives of an electric vehicle. In Proceedings of IEEE Conference on Control Applications, Istanbul, Turkey (pp. 380–385).Google Scholar
  102. Nvidia. (2008). Computer Unified Device Architecture Programming Guide 2.2. 2008, NVIDIA: Santa Clara, CA.Google Scholar
  103. Ostergaard, J. J. (1977). Fuzzy logic control of a heat exchanger process. In M. M. Gupta, G. N. Saridis, & B. R. Gaines (Eds.), Fuzzy automata and decision processes (pp. 285–320). Amsterdam, The Netherlands: North-Holland.Google Scholar
  104. Petriu, E.M., Cretu, A., & Payeur, P. (2007). Neural network modelling techniques for the real-time rendering of the geometry and elasticity of 3D objects. IEEE International Workshop on Soft Computing Applications (pp. 11–16).Google Scholar
  105. Radetzky, A., Nurnberger, A., & Pretschner, P. (2000). Elastodynamic shape modeler: A tool for defining the deformation behavior of virtual tissues. RadioGraphics, 20(1), 865–881.CrossRefGoogle Scholar
  106. Rasmusson, A., Mosegaard, J., & Sangild, T. (2008). Exploring parallel algorithms for volumetric mass-spring-damper models in CUDA. In Proceedings of the 4th International Symposium on Biomedical Simulation (pp. 49–58). London, UK: Springer.Google Scholar
  107. Roberts, K., Bell, R., & Duffy, A. (2006). Evolution of surgical skills training. World Journal of Gastroenterology, 12(20), 3219.CrossRefGoogle Scholar
  108. Sala, A., Turini, G., Ferrari, M., Mosca, F., & Ferrari, V. (2011a). Integration of biomechanical parameters in tetrahedral mass-spring models for virtual surgery simulation. In Conference Proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 4550(4).Google Scholar
  109. Samani, A., Bishop, J., Yaffe, M. J., & Plewes, D. B. (2001). Biomechanical 3D finite element modeling of the human breast using MRI data. IEEE Transactions on Medical Imaging, 2001(20), 271–279.CrossRefGoogle Scholar
  110. Santibanez, V., Kelly, R., & Llama, M. A. (2005). A novel global asymptotic stable set-point fuzzy controller with bounded torques for robot manipulators. IEEE Transactions on Fuzzy Systems, 13(3), 362–372.CrossRefGoogle Scholar
  111. Satava, R. (1998) Medical virtual reality: the current status of the future. In: Proceedings of 4th Conference on Medicine Meets Virtual Reality (MMRV IV), San Diego, CA (pp. 100–106).Google Scholar
  112. Seker, H., Odetayo, M. O., Petrovic, D., & Naguib, R. N. G. (2003). A fuzzy logic based-method for prognostic decision making in breast and prostate cancers. EEE Transactions on Information Technology in Biomedicine, 7(2), 114–122.CrossRefGoogle Scholar
  113. Seymour, N., Gallagher, A., Roman, S., et al. (2002). Virtual reality training improves operating room performance. Annals of Surgery, 236(4), 458–464.CrossRefGoogle Scholar
  114. Smith, M. L. (1994). Sensors, appliance control, and fuzzy logic. IEEE Transactions on Industry Applications, 30(2), 305–310.CrossRefGoogle Scholar
  115. Srinivasan, S., Mital, D. P., & Haque, S. (2006). A quantitative analysis of the effectiveness of laparascopy and endoscopy virtual reality simulators. Computers & Electrical Engineering, 2006, 283–298.CrossRefGoogle Scholar
  116. Sugeno, M. (1985). Industrial applications of fuzzy control. New York: Elsevier.zbMATHGoogle Scholar
  117. Sugeno, M., & Nishida, M. (1985). Fuzzy control of model car. Fuzzy Sets and Systems, 16, 103–113.CrossRefGoogle Scholar
  118. Sun, Y. L., & Er, M. J. (2004). Hybrid fuzzy control of robotics systems. IEEE Transactions on Fuzzy Systems, 12(6), 755–765.CrossRefGoogle Scholar
  119. Szabo, B. A. (1991). Finite element analysis. New York: Wiley.Google Scholar
  120. Takagi, H. (1992). Application of neural networks and fuzzy logic to consumer products. In Proceedings of International Conference on Industrial Electronics, Control, Instrumentation, and Automation, San Diego, CA, November 1992 (pp. 1629–1633).Google Scholar
  121. Tani, T., Murakoshi, S., & Umano, M. (1996). Neuro-fuzzy hybrid control system of tank level in petroleum plant. IEEE Transactions on Fuzzy Systems, 4(3), 360–368.CrossRefGoogle Scholar
  122. Tejada, E., & Ertl, T. (2005). Large steps in GPU-based deformable bodies simulation. In Simulation modelling practice and theory (pp. 703–15). Elsevier.Google Scholar
  123. Tendick, F., Downes, M., Goktekin, T., Cavusoglu, M. C., Feygin, D., Wu, X. L. (2000). A virtual environment testbed for training laparoscopic surgical skills. Presence, 9(3), 236–255.CrossRefGoogle Scholar
  124. Teschner, M., Heidelberger, B., Muller, M. & Gross, M. (2004). A versatile and robust model for geometrically complex deformable solids. Proceedings of the Computer Graphics International: 312–319.Google Scholar
  125. Tong, R. M., Beck, M. B., & Latten, A. (1980). Fuzzy control of the activated sludge wastewater treatment process. Automatica, 6, 695–701.zbMATHCrossRefGoogle Scholar
  126. Tsourdos, A., Economou, J. T., White, A. B., & Luk, P. C. K. (2003). Control design for a mobile robot: A fuzzy LPV approach. In Proceedings of IEEE Conference on Control Applications, Istanbul, Turkey, pp. 552–557.Google Scholar
  127. Umbers, I. G., & King, P. J. (1980). An analysis of human-decision making in cement kiln control and the implications for automation. International Journal of Man-Machine Studies, 12, 11–23.CrossRefGoogle Scholar
  128. Van Gelder, A. (1998). Approximate simulation of elastic membranes by triangulated spring meshes. J. Graph. Tools, 3, 21–42.CrossRefGoogle Scholar
  129. Vollinger, U., Setier, H., Priesnitz, J., & Krause, F. L. (2009). Evolutionary optimization of mass-spring models. Journal of Manufacturing Science and Technology, 1(3), 137–141.CrossRefGoogle Scholar
  130. Vozelinek, J., Huff, J., & Reznek, M. (2004). See one, do one, teach one: Advanced technology in medical education. Academic Emergency Medicine, 11(11), 1149–1154.CrossRefGoogle Scholar
  131. Wai, R. J., & Chen, P. C. (2004). Intelligent tracking control for robot manipulator including actuator dynamics via TSK-type fuzzy neural network. IEEE Transactions on Fuzzy Systems, 12(4), 552–560.zbMATHCrossRefGoogle Scholar
  132. Wang, J. S., & Lee, C. S. G. (2003). Self-adaptive recurrent neuro-fuzzy control of an autonomous underwater vehicle. IEEE Transactions on Robotics and Automation, 19(2), 283–295.CrossRefGoogle Scholar
  133. Webster, R., Haluck, R. S., Ravenscroft, R., Mohler, B., Crouthamel, E., & Frack, T. (2002). Elastically deformable 3D organs for haptic surgical simulation. Medicine Meets Virtual Reality, 2002, 570–572.Google Scholar
  134. Wu, J. C., & Liu, T. S. (1996). A sliding-mode approach to fuzzy control design. IEEE Transactions on Control Systems Technology, 4(2), 141–151.CrossRefGoogle Scholar
  135. Wu, C. J., & Sung, A. H. (1994). The application of fuzzy logic to JPEG. IEEE Transactions on Consumer Electronics, 40(4), 976–984.CrossRefGoogle Scholar
  136. Xiao, J., Xiao, J. Z., Xi, N., Tummala, R. L., & Mukherjee, R. (2004). Fuzzy controller for wall-climbing microrobots. IEEE Transactions on Fuzzy Systems, 12(4), 466–480.CrossRefGoogle Scholar
  137. Xu, S., Liu, X. P., Member, S., Zhang, H., Member, S., & Hu, L. (2010). An improved realistic mass-spring model for surgery simulation. International Conference on Automation and Logistics, 1–6.Google Scholar
  138. Yamamoto, T. (2011). Applying tissue models in teleoperated robot-assisted surgery. Dissertation for Degree of Doctor of Philosophy. Johns Hopkins University.Google Scholar
  139. Yang, S. X., Li, H., Meng, M. Q. H., & Liu, P. X. (2004). An embedded fuzzy controller for a behavior-based mobile robot with guaranteed performance. IEEE Transactions on Fuzzy Systems, 12(4), 436–446.CrossRefGoogle Scholar
  140. Zadeh, L. A. (1996). Fuzzy logic = computing with words. IEEE Transactions on Fuzzy Systems, 4(2).CrossRefGoogle Scholar
  141. Zerbato, D., Galvan, S., Fiorini, P. (2007). Calibration of mass spring models for organ simulations. In: Proceedings of the 2007 IEEE RSJ International Conference on Intelligent Robots and Systems (pp. 370–375).Google Scholar
  142. Zhang, R. T., & Phillis, Y. A. (1999). Fuzzy control of queueing systems with heterogeneous servers. IEEE Transactions on Fuzzy Systems, 7(1), 17–26.CrossRefGoogle Scholar
  143. Zhang, Y., Zhao, J., Yuan, Z., Ding, Y., Long, C., & Xiong, L. (2010). CUDA based GPU programming to simulate 3D tissue deformation. In International Conference on Biomedical Engineering and Computer Science (Vol. 1, pp. 1–5).Google Scholar
  144. Zhang J, Zhou J, Huang W, Qin J, Yang T, Liu J, Su Y, Chui CK, & Chang S. (2013). GPU-friendly gallbladder modeling in laparoscopic cholecystectomy surgical training system. Computers & Electrical Engineering, 39(1) (1// 2013), 122–129. 2MSM LT 4-7.Google Scholar
  145. Zheng, H., & Zhu, K. Y. (2004). A fuzzy controller-based multiple-model adaptive control system for blood pressure control. In Proceedings of 8th Conference on Control, Automation, Robotics and Vision, Kunming, China (pp. 1353–1358).Google Scholar
  146. Zhong, Y., Shirinzadeh, B., & Smith, J. (2007). Soft tissue deformation with neural dynamics for surgery simulation. International Journal of Robotics and Automation.Google Scholar
  147. Ziv, A., Wolpe, P., Small, S., et al. (2003). Simulation-based medical education: An ethical imperative. Academic Medicine, 78, 783–788.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Complexity InstituteNanyang Technological UniversitySingaporeSingapore
  2. 2.Biological Mapping Research Institute (BIOMAP)PerthAustralia

Personalised recommendations