Advertisement

Phosphate Solubilizing Microorganisms and Their Role in Sustainable Agriculture

  • Kodoth Prabhakaran Nair
Chapter

Abstract

The chapter discusses, at length, the role of Phosphate Solubilizing Microorganisms (Vesicular Arbuscular Mycorrhizae, VAM) and their benefits, especially with regard to economizing Phosphate fertilizer application to soil, in sustainable agriculture.

Keywords

Phosphorus solubilization Phosphorus solubilizing microorganisms Phosphate fertilizers Phosphorus solubilizing microorganisms Inoculants Mycorrhiza Arbuscular Mycorrhizal fungi Crop response 

References

  1. Ahmad, S. (1995). Agriculture-fertilizer interface in Asia issues of growth and sustainability. New Delhi: Oxford and IBH Publishing Co.Google Scholar
  2. Algawadi, A. R., & Gaur, A. C. (1988). Associative effect of Rhizobium and phosphate solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant and Soil, 105, 241–246.CrossRefGoogle Scholar
  3. Aman, R. I. (1995). Fluorescently labeled rRNA targeted nucleotide probes in the study of microbial ecology. Microbial Ecology, 4, 543–554.Google Scholar
  4. Asea, P. E. A., Kucey, R. M. N., & Stewart, J. W. B. (1988). Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biology and Biochemistry, 20, 459–464.CrossRefGoogle Scholar
  5. Azcon-Aguilar, C., Diaz-Rodriguez, R., & Barea, J. M. (1986). Effect of soil microorganisms on spore germination and growth on the vesicular arbuscular mycorrhizal fungus (Glomus moseae). Transactions of the British Mycological Society, 86, 337–340.CrossRefGoogle Scholar
  6. Babu-Khan, S., Yeo, T. C., Martin, W. I., Duron, M. R., Rogers, R. D., & Goldstein, A. H. (1995). Cloning of a mineral phosphate solubilizing gene from Peudomonas cepacia. Applied and Environmental Microbiology, 61, 972–978.PubMedPubMedCentralGoogle Scholar
  7. Bagyaraj, D. J. (1984). Biological interaction with VA mycorrhizal fungi. In C. L. Powell & D. J. Bagyaraj (Eds.), VA Mycorrhiza (pp. 131–153). Boca Raton: CRC.Google Scholar
  8. Banik, S., & Dey, B. K. (1982). Available phosphate content of an alluvial soil as influenced by inoculation of some isolated phosphate solubilizing microorganisms. Plant and Soil, 69, 353–364.CrossRefGoogle Scholar
  9. Banik, S., & Dey, B. K. (1983). Phosphate solubilizing potentiality of the microorganisms capable of utilizing aluminium phosphate as a sole phosphate source. Zentralblatt fur Mikrobiologie, 138, 17–23.CrossRefGoogle Scholar
  10. Barber, S. A. (1984). Soil nutrient bioavailability: A mechanistic approach. New York: Wiley.Google Scholar
  11. Barea, J. M., Azcon, R., & Azcon-Aguilar, C. (1983). Interaction between phosphate solubilizing bacteria and VA mycorrhiza to improve the utilization of rock phosphate by plants in non acidic soils (pp. 127–152). Brussels: Third International Congress on Phosphorus Compounds.Google Scholar
  12. Bashan, Y., Puente, M. E., Rodriquea, M. N., Toledo, G., Holguin, G., Ferrera-Cerrato, R., & Pedrin, R. (1995). Survival of Azorhizobium brasilense in the bulk soil and rhizosphere of 23 soil types. Applied and Environmental Microbiology, 61, 1938–1945.PubMedPubMedCentralGoogle Scholar
  13. Bethlenfalvay, G. J. (1994). Sustainability and rhizoorganisms in an ecosystem. Sociedad Mexicana de la Ciencia del Suelo, 4, 9–10.Google Scholar
  14. Burgstaller, W., Straser, H., & Shinner, F. (1992). Solubilization of zinc oxide from filter dust with Penicillium simplicissimum: Bioreactor, leaching and stoichiometry. Environmental Science & Technology, 26, 340–346.CrossRefGoogle Scholar
  15. Chabot, R., Anton, H., & Cescas, M. P. (1996). Growth promotion of maize and lettuce by phosphate solubilizing Rhizobium leguminosarum biovar phaseoli. Plant and Soil, 184, 311–321.CrossRefGoogle Scholar
  16. Colbert, S. F., Hendson, M., Ferri, M., & Schroth, M. N. (1993). Enhanced growth and activity of a biocontrol bacterium genetically engineered to utilize salicylate. Applied Microbiology, 59, 2071–2076.Google Scholar
  17. Cunningham, J. E., & Kuiack, C. (1992). Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaji. Applied and Environmental Microbiology, 58, 1451–1458.PubMedPubMedCentralGoogle Scholar
  18. Downey, J., & Van Kessel, C. (1990). Dual inoculation of Pisum sativum with Rhizobium leguminosarum and Penicillium bilaji. Biology and Fertility of Soils, 10, 194–196.CrossRefGoogle Scholar
  19. Dubey, S. K. (1996). Response of soybean to rock phosphate applied with Pseudomonas striata in a typic chromustert. Journal of the Indian Society of Soil Science, 44, 252–255.Google Scholar
  20. Dubey, S. K. (2001). Associative effect of nitrogen fixing and phosphate solubilizing bacteria in rainfed soybean (Glycine max) grown in vertisols. Indian Journal of Agricultural Sciences, 71, 476–479.Google Scholar
  21. Duponnois, R., Kisa, M., & Plenchette, C. (2006). Phosphate solubilizing potential of the nematofungus Arthrobotrys oligospora. Journal of Plant Nutrition and Soil Science, 169, 280–282.CrossRefGoogle Scholar
  22. Elgala, H. M., Ishac, Y. Z., Abdel-Monem, M., El-Ghandour, I. A. I., Hang, P. M., Berthelin, J., Bollag, J. M., Mc Gill, W. B., & Page, A. I. (1995). Effect of single and combined inoculation with Azotobacter and VA mycorrhizal fungi on growth and nutrient content of maize and wheat plants. Environmental Impacts of Soil Component Interactions, 2, 109–116.Google Scholar
  23. Frederic, B. G., Estefania, A., Jordi, B. F., Charles, A. A., Dolors, M., & Manel, P. (2000). Assessment of microbial community structure changes by amplified ribosomal DNA restriction analysis (ARDRA). International Microbiology, 3, 103–106.Google Scholar
  24. Gaume, A. (2000). Low P tolerance of various maize cultivars: The contribution of the root exudation. Ph.D dissertation, Swiss Federal Institute of Technology, Zurich, Switzerland.Google Scholar
  25. Gaur, A. C. (1990). Phosphate solubilizing microorganisms as Biofertilizers (p. 176). New Delhi: Omega Scientific.Google Scholar
  26. Glick, B. R., & Bashan, Y. (1997). Genetic manipulation of plant growth promoting bacteria to enhance biocontrol of phytopathogens. Biotechnology Advances, 15, 353–378.CrossRefGoogle Scholar
  27. Goldstein, A. H., Rogers, R. D., & Mead, G. (1993). Mining by microbe. Bio Technology, 11, 1250–1254.Google Scholar
  28. Gull, M., Hafeez, F. Y., Saleem, M., & Malik, K. A. (2004). Phosphorus uptake and growth promotion of chickpea by co-inoculation of mineral phosphate solubilizing bacteria and a mixed rhizobial culture. Australian Journal of Experimental Agriculture, 44, 623–628.CrossRefGoogle Scholar
  29. Gunasekaran, S., & Pandiarajan, P. (1995). Dual inoculation of rhizobium and phosphobacteria with two forms of phosphorus in pigeonpea. In Microbiology abstracts XXXVI. Annual conference of the Association of Microbiologists of India (p. 111). Hissar, Haryana State, India. November 8–10.Google Scholar
  30. Gupta, R. R., Singal, R., Shanker, A., Kuhad, R. C., & Saxena, R. K. (1994). A modified plate assay for screening phosphate solubilizing microorganisms Gen. Applied Microbiology, 40, 255–260.Google Scholar
  31. Gyaneshwar, P., Naresh, K. G., & Parekh, L. J. (1998). Effect of buffering on the phosphate solubilizing ability of microorganisms. World Journal of Microbiology and Biotechnology, 14, 669–673.CrossRefGoogle Scholar
  32. Gyaneshwar, P., Parekh, L. J., Archana, G., Podle, P. S., Collins, M. D., Hutson, R. A., & Naresh, K. G. (1999). Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae. FEMS Microbiology Letters, 171, 223–229.CrossRefGoogle Scholar
  33. Halder, A. K., & Chakrabarty, P. K. (1993). Solubilization of inorganic phosphate by Rhizobium. Folia Microbiologica, 38, 325–330.CrossRefGoogle Scholar
  34. Ho, W. C., & Ko, W. H. (1985). Effect of environmental edaphic factors. Soil Biology and Biochemistry, 17, 167–170.CrossRefGoogle Scholar
  35. Holben, W. E., Noto, K., Sumino, T., & Suwa, Y. (1998). Molecular analysis of bacterial communities in a three compartment granular activated sludge system indicates community-level control by incompatible nitrification process. Applied and Environmental Microbiology, 64, 2528–2532.PubMedPubMedCentralGoogle Scholar
  36. Hoon, H., Park, R. D., Kim, Y. W., Rim, Y. S., Park, K. H., Kim, T. H., Such, J. S., & Kim, K. Y. (2003). 2-ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Current Microbiology, 47, 87–92.CrossRefGoogle Scholar
  37. Hugenholtz, P., Goebel, B. M., & Pace, N. R. (1998). Impact of culture independent studies on the emerging polygenetic view of bacterial diversity. Journal of Bacteriology, 180, 4765–4774.PubMedPubMedCentralGoogle Scholar
  38. Illmer, P. A., Barbato, A., & Schinner, F. (1995). Solubilization of hardly soluble AlPO4 with P-solubilizing microorganisms. Soil Biology and Biochemistry, 27, 260–270.Google Scholar
  39. Jeffries, P. (1987). Use of mycorrhizae in agriculture. CRC Critical Reviews in Biotechnology, 5, 319–357.CrossRefGoogle Scholar
  40. Johri, J. K., Surange, S., & Nautiyal, C. S. (1999). Occurrence of salt, pH and temperature tolerant phosphate solubilizing bacteria in alkaline soils. Current Microbiology, 39, 89–93.CrossRefGoogle Scholar
  41. Khan, M. S., Aamil, M., & Zaidi, A. (1997). Associative effect of Bradyrhizobium sp (vigna) and phosphate solubilizing bacteria on moongbean (Vigna radiata L.) wilczek. Biojournal, 10, 101–106.Google Scholar
  42. Khan, M. S., Aamil, M., & Zaidi, A. (1998). Moogbean response to inoculation with nitrogen fixing and phosphate solubilizaing bacteria. In A. M. Deshmukh (Ed.), Biofertilizers and biopesticides (pp. 40–48). Jaipur: Technoscience Publications.Google Scholar
  43. Kim, K. Y., Jordan, D., & McDonald, G. A. (1997). Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biology and Fertility of Soils, 24, 347–352.CrossRefGoogle Scholar
  44. Kim, K. Y., Jordan, D., & McDonald, G. A. (1998). Enterobacter aglomerans phosphate solubilizing bacteria and microbial activity in soil: Effect of carbon sources. Soil Biology and Biochemistry, 30, 995–1003.CrossRefGoogle Scholar
  45. Kucey, R. M. N. (1983). Phosphate solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Canadian Journal of Soil Science, 63, 671–678.CrossRefGoogle Scholar
  46. Kucey, R. M. N. (1987). Increased P uptake by wheat and field beans inoculated with a phosphorus solubilizing Penicillium bilaji strain and with vesicular arbuscular mycorrhizal fungi. Applied and Environmental Microbiology, 53, 2699–2703.PubMedPubMedCentralGoogle Scholar
  47. Kucey, R. M. N. (1988). Effect of Penicillium bilaji on the solubility and uptake of P and micronutrients from soil by wheat. Canadian Journal of Soil Science, 68, 261–270.CrossRefGoogle Scholar
  48. Kucey, R. M. N., Janzen, H. H., & Legget, M. E. (1989). Microbial mediated increases in plant available phosphorus. Advances in Agronomy, 42, 199–228.CrossRefGoogle Scholar
  49. Kumar, V., Behl, R. K., & Narula, N. (2001). Establishment of phosphate solubilizing strains of Azotbacter chrococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiological Research, 156, 87–93.CrossRefGoogle Scholar
  50. Lynch, J. M. (1983). Soil Biotechnology: Microbiological factors in crop productivity. Oxford: Blackwell.Google Scholar
  51. Maliha, R., Samina, K., Najma, A., Sadia, A., & Farooq, L. (2004). Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pakistan Journal of Biological Sciences, 7, 187–196.CrossRefGoogle Scholar
  52. Martinez-Murcia, A. J., Acinas, S. G., & Rodriguez-Valera, F. (1995). Evaluation of prokaryotic diversity by restrictase digestion of 16S rDNA directly amplified from hipersaline environments. FEMS Microbiology Ecology, 17, 247–256.CrossRefGoogle Scholar
  53. Mehana, T. A., & Wahid, O. A. A. (2002). Associative effect of phosphate dissolving fungi, Rhizobium and phosphate fertilizer on some soil properties, yield components and the phosphorus and nitrogen concentration and uptake by Vicia fabia L., under field conditions. Pakistan Journal of Biological Sciences, 5, 1226–1231.CrossRefGoogle Scholar
  54. Motsara, M. R., Bhattacharya, P. B., & Srivastava, B. (1995). Biofertilizers, their description and characteristics. In Biofertilizer technology, marketing and usage. A sourcebook – Cum Glossary (pp. 9–18). New Delhi: Fertilizer Development and Consultation Organization.Google Scholar
  55. Mukherjee, P. K., & Rai, R. K. (2000). Effect of vesicular arbuscular mycorrhizae and phosphate solubilizing bacteria on growth, yield and phosphorus uptake by wheat (Triticum aestivum) and chickpea (Cicer arietinum). Indian Journal of Agronomy, 45, 602–607.Google Scholar
  56. Nahas, E. (1996). Factors determining rock phosphate solubilization by microorganism isolated from soil. World Journal of Microbiology and Biotechnology, 12, 18–23.CrossRefGoogle Scholar
  57. Nair, K. P. P. (2013). The buffer power concept and its relevance in African and Asian soils. Advances in Agronomy, 121, 447–529.CrossRefGoogle Scholar
  58. Natarajan, T., & Subrammanian, P. (1995). Response of phospho-bacteria along with Rhizobium at two levels of phosphorus on groundnut. In Microbiology abstracts XXXVI annual conference of the association of microbiologists of India (p. 111), Hissar, Haryana State, India November 8–10Google Scholar
  59. Omar, S. A. (1998). The role of rock phosphate solubilizing fungi and vesicular arbuscular mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World Journal of Microbiology and Biotechnology, 14, 211–219.CrossRefGoogle Scholar
  60. Ozanne, P. G. (1980). Phosphate nutrition of plants – General treatise. In F. E. Khasawneh, E. C. Sample, & E. J. Kamprath (Eds.), The role of phosphorus in agriculture (pp. 559–589). Madison: American Society of Agronomy, Crop Science Society of America.Google Scholar
  61. Parks, E. J., Olson, G. J., Brinckman, F. E., & Baldi, F. (1990). Characterization by high performance liquid chromatography (HPLC) of the solubilization of phosphorus in iron ore by a fungus. Journal of Industrial Microbiology & Biotechnology, 5, 183–189.CrossRefGoogle Scholar
  62. Piccini, A., & Azcon, R. (1987). Effect of phosphate solubilizing bacteria and vesicular arbuuscular mycorrhizal fungi on the utilization of Bayovar rock phosphate by alfalfa plants using a sand vermiculite medium. Plant and Soil, 101, 45–50.CrossRefGoogle Scholar
  63. Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiology, 17, 362–370.Google Scholar
  64. Poi, S. C., Ghosh, G., & Kabi, M. C. (1989). Response of chickpea (Cicer arietinum L.) to combined inoculation with Rhizobium, phosphobacteria and mycorrhizal organisms. Zentral fur Microbiology, 114, 249–253.Google Scholar
  65. Ponmurugan, P., & Gopi, C. (2006). In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria. African Journal of Biotechnology, 5, 348–350.Google Scholar
  66. Prabhakaran, J., Ravi, K. B., & Srinivasan, K. (1996). Response of Vamban-I Blackgram to N2 (2 subscript please) fixer and P mobilizers in acid soil. In Microbiology abstracts XXXVII. Annual conference of the microbiologists of India (p. 120), IIT, Chennai, Tamil Nadu, India, December 4–6.Google Scholar
  67. Reyes, I., Bernier, L., Simard, R. R., & Antoun, H. (1999). Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV induced mutants. FEMS Microbiology Ecology, 28, 281–290.CrossRefGoogle Scholar
  68. Roos, W., & Luckner, M. (1984). Relationships between proton extrusion and fluxes of ammonium ions and organic acid in Penicillium cyclopium. Journal of General Microbiology, 130, 1007–1014.Google Scholar
  69. Saber, M. S. M., & Kabesh, M. O. (1990). Utilization of biofertilizers in field crop production II. A comparison study on the effect of biofertilization or sulphur application on yield and nutrient uptake by lentil plants. Egyptian Journal of Soil Science, 30, 415–422.Google Scholar
  70. Sarojini, V., Verma, S., & Mathur, M. S. (1989). Biocoenotic association between nitrogen fixing and phosphate solubilizing microorganisms. Current Science, 59, 1099–1100.Google Scholar
  71. Satizabal, E. J. H., & Saif, U. S. R. (1987). Interaction between vesicular arbuscular mycorrhiza and leguminous Rhizobium in an oxisol of the eastern plains of Colombia. Acta Agronomica Journal, 7–21.Google Scholar
  72. Singal, R., Gupta, R., & Saxena, R. K. (1994). Rock phosphate solubilization under alkaline conditions by Aspergillus japonicus and A. foetidus. Folia, 39, 33–36.Google Scholar
  73. Singh, H. P. (1990). Response of dual inoculation with Bradyrhizobium and VAM mycorrhiza or phosphate solubilizer on soybean in mollisol. In B. L. Jalali & H. Chand (Eds.), Trends in mycorrhiza (Research Proceedings of the National Conference on Mycorrhiza) (pp. 14–16). Hissar: Haryana Agricultural University.Google Scholar
  74. Subba Rao, N. S. (1982). In N. S. S. Rao (Ed.), Advances in agricultural microbiology (pp. 229–305). New Delhi: Oxford and IBH Publ. Co.Google Scholar
  75. Tinker, P. B. (1980). In F. E. Khasawneh, E. C. Sample, & E. J. Kamprath (Eds.), The role of phosphorus in agriculture. Madison: Soil Science Society of America.Google Scholar
  76. Van Elsas, J. D., Van Overbeek, L. S., & Fouchier, R. (1991). A specific marker pat for studying the fate of introduced bacteria and their DNA in soil using a combination of detection techniques. Plant and Soil, 138, 49–60.CrossRefGoogle Scholar
  77. Van Veen, J. A., Leonard, S., Van Overbeek, L. S., & Van Ellsas, J. D. (1997). Fate and activity of microorganisms introduced into soil. Microbiology and Molecular Biology Reviews, 61, 121–135.PubMedPubMedCentralGoogle Scholar
  78. Vassilev, N., Fenice, M., & Federici, F. (1996). Rock phosphate solubilization with gluconic acid produced by immobilized Penicillium variable P16. Biotechnology Techniques, 20, 585–588.CrossRefGoogle Scholar
  79. Vazquez, P., Holguin, G., Puente, M., ELopez Cortes, A., & Bashan, Y. (2000). Phosphate solubilizing microorganisms associated with the rhizosphere of mangroves in a semi arid coastal lagoon. Biology and Fertility of Soils, 30, 460–468.CrossRefGoogle Scholar
  80. Venkateswarlu, B., Rao, A. V., Raina, P., & Ahmad, N. (1984). Evaluation of phosphorus solubilization by microorganisms isolated from arid soil. Journal of the Indian Society of Soil Science, 32, 273–277.Google Scholar
  81. Whitelaw, M. A. (2000). Growth promotion of plants inoculated with phosphate solubilizing fungi. Advances in Agronomy, 69, 99–151.CrossRefGoogle Scholar
  82. Whitelaw, M. A., Harden, T. J., & Helyar, K. R. (1999). Phosphate solubilization in solution culture by the soil fungus Penicillium radicum. Soil Biology and Biochemistry, 32, 655–665.CrossRefGoogle Scholar
  83. Zaidi, A., & Khan, M. S. (2005). Interactive effect of rhizospheric microorganisms on growth, yield and nutrient uptake of wheat. Journal of Plant Nutrition, 28, 2079–2092.CrossRefGoogle Scholar
  84. Zaidi, A., Khan, M. S., & Aamil, M. (2004). Bio-associative effect of rhizospheric microorganisms on growth, yield and nutrient uptake of greengram. Journal of Plant Nutrition, 27, 599–610.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kodoth Prabhakaran Nair
    • 1
  1. 1.International Agricultural Scientistc/o Mavila PankajakshyCalicutIndia

Personalised recommendations