How to Manage Water Use for Sustainable Agriculture?

  • Kodoth Prabhakaran Nair


Global fresh water resources are finite and non replenishable. The renewable fraction of fresh water constitutes less than 1% of the total fresh water pool. This chapter discusses, at length, several aspects of sustainable water use for agricultural production, vis-à-vis global needs for all other purposes, including domestic and societal needs, in short, for the very survival of human kind on planet earth with the implications on food security. The chapter also discusses several other aspects of the key element, Nitrogen, in sustainable agriculture, starting from the nitrogen cycle to global warming, contributed by the unbridled use of urea in green revolution leading to enormous nitrous oxide emission, on urea hydrolysis, leading to global warming.


Fresh water Supply-Demand chain of fresh water Ground water Water availability Water demand Irrigated area Irrigated agriculture Salinization Water logging Overexploitation of water Unsustainable Ground water use Global climate assessment Water Ambient climate Environment Varietal improvement Agronomic practices and crop choice Need-based irrigation Micro irrigation Sprinkler irrigation Water productivity Rainfed agriculture Brackish water Agricultural drainage Soil pollution Innovative and low-cost technologies Water sharing Equitable distribution Pricing water Regularity mechanisms Nitrogen fertilizer Nitrogen use Crop growth Photosynthesis N supply synchronization Nitrogen demand 


  1. Aggarwal, P. K., Knopff, M. J., Cassman, K. G., & ten Berge, H. F. M. (1997). Simulating genotypic strategies for increasing rice yield potential in irrigated, tropical environments. Field Crops Research, 51, 5–17.CrossRefGoogle Scholar
  2. Becker, M., Asch, F., Maskey, S. L., Pande, K. R., Shah, S. C., & Shrestha, S. (2007). Effects of transition season management on soil N dynamics and systems N balances in rice-wheat rotations of Nepal. Field Crops Research, 103, 98–108.CrossRefGoogle Scholar
  3. Belder, P., Bouman, B. A. M., Spiertz, J. H. J., Peng, S., Castaneda, A. R., & Visperas, R. M. (2005). Crop performance, nitrogen and water use in flooded and aerobic rice. Plant and Soil, 273, 167–182.CrossRefGoogle Scholar
  4. Bennett, J. (2003). Opportunities for increasing water productivity of CGIAR for tolerance of water defects for using crops through plant breeding and molecular techniques. In J. W. Kijne, R. Barker, & D. Molden (Eds.), Water Productivity in Agriculture: Limits and Opportunities for Improvement (pp. 103–126). Wallingford: CAB International.CrossRefGoogle Scholar
  5. Biemond, H., & Vos, J. (1992). Effects of nitrogen and the development and growth of the potato plant 2. The partitioning of dry matter, nitrogen and nitrate. Annals of Botany, 70, 37–45.CrossRefGoogle Scholar
  6. Bouman, B. A. M. (2007). A conceptual framework for the improvement of crop water productivity at different spatial scales. Agricultural Systems, 93, 43–60.CrossRefGoogle Scholar
  7. Bucks, D. A. (1995). Historical developments in micro irrigation. In F. R. Lamm (Ed.), Micro irrigation for a changing world (Proc. Fifth International Micro Irrigation Congress, April 2–6, 1996, Orlando, FL) (pp. 1–5). St Joseph: American Society of Agricultural Engineers.Google Scholar
  8. Burt, C. M., Howes, D. J., & Mutziger, A. (2001). Evaporation estimates for irrigated agriculture in California. In Paper presented at the irrigation association conference, November 4–6, 2001, San Antonio, TXGoogle Scholar
  9. Cabrera-Bosquet, L., Molero, G., Bort, J., Nogues, S., & Araus, J. L. (2007). The combined effect of constant water deficit and nitrogen supply on WUE, NUE and Δ13 C in durum wheat potted plants. The Annals of Applied Biology, 151, 277–289.CrossRefGoogle Scholar
  10. Campbell, C. A., Myers, R. J. K., & Curtin, D. (1995). Managing nitrogen for sustainable crop production. Fertility Research, 42, 277–296.CrossRefGoogle Scholar
  11. Cassman, K. G., Olk, D. C., & Dobermann, A. (1997). Scientific evidence of yield and productivity decline in irrigated rice systems of tropical Asia. International Rice Commission Newsletter, 46, 7–16.Google Scholar
  12. CGIAR. (2002). Challenge program for water and food. Washington, DC: Consultative Group for International Agricultural Research.Google Scholar
  13. Chapman, A. L., & Muchow, R. C. (1985). Nitrogen accumulated and partitioned at maturity by grain legumes under different water regimes in a semi-arid tropical environment. Field Crops Research, 11, 69–79.CrossRefGoogle Scholar
  14. De Sena, A.M. (1998). Satellites take away the guesswork out of irrigation. US Water News 15(8), August, 1–8.Google Scholar
  15. De Willigen, P., & van Noordwijk, M. (1987). Roots for plant production and nutrient use efficiency. Ph.D thesis Agricultural University, Wageningen, The Netherlands 282 p.Google Scholar
  16. Dobermann, A., & Cassman, K. G. (2002). Plant nutrient management for enhanced productivity in intensive grain production systems of the United States and Asia. Plant and Soil, 247, 153–175.CrossRefGoogle Scholar
  17. Edmeades, G. O., Cooper, M., Lafitte, R., Zinselmeir, C., Ribaut, J. M., Habben, J. E., Loffler, C., & Banziger, M. (2001). Abiotic stresses and staple crops. In J. Nosberger, H. H. Geiger, & P. C. Struik (Eds.), Crop science: Progress and prospects (pp. 137–154). Wallingford: CAB International.Google Scholar
  18. Eickhout, B., Bouwman, A. F., & van Zeijts, H. (2006). The role of nitrogen in world food production and environmental sustainability. Agriculture, Ecosystems & Environment, 116, 4–14.CrossRefGoogle Scholar
  19. Evans, L. T. (1998). Feeding the Ten Billion: Plants and population growth. Cambridge: Cambridge University Press.Google Scholar
  20. FAO. (1993). Prevention of water pollution by agriculture and related activities. Rome: Food and Agriculture Organization.Google Scholar
  21. FAO. (1996a). Control of water pollution from agriculture (Irrigation and Drainage Paper 55). Rome: Food and Agriculture Organization.Google Scholar
  22. FAO. (1996b). Energy for sustainable development and food security in Africa. Rome: Food and Agriculture Organization.Google Scholar
  23. FAO. (1997). Management of agricultural drainage water quality (Water Reports 13). Rome: Food and Agriculture Organization.Google Scholar
  24. FAO. (1998). Crops and drops: Making the best use of water for agriculture. Rome: Food and Agriculture Organization.Google Scholar
  25. FAO. (2000a). Agriculture Towards 2015/30 technical interim report, Global Perspectives Unit. Rome: Food and Agriculture Organization.Google Scholar
  26. FAO. (2000b). The State of Food and Agriculture: Lessons from the past 50 years. Rome: Food and Agriculture Organization.Google Scholar
  27. FAOSTAT. (1999). FAOSTAT Database. Rome: Food and Agriculture Organization.Google Scholar
  28. Ghassemi, F., Jackerman, A. J., & Nex, H. A. (1995). Salinization of land and water resources: Human causes, extent, management and case studies. Sydney: University of New South Wales Press.Google Scholar
  29. Goulding, K., Jarvis, S., & Whitmore, S. (2008). Optimizing nutrient management for farm systems. Philosophical Transactions of the Royal Society B, 363, 667–680.CrossRefGoogle Scholar
  30. Gupta, R. K., & Abrol, I. P. (2000). Salinity buildup and changes in the rice-wheat systems of the Indo-Gangetic plains. Experimental Agriculture, 37, 99–113.Google Scholar
  31. Hardin, G. (1968). Tragedy of the commons. Science, 162, 1243–1248.CrossRefGoogle Scholar
  32. Harris, H. C. (1991). Implications of climate variability. In H. C. Harris, P. J. M. Cooper, & M. Pela (Eds.), Soil and crop management for improved water use efficiency in Rainfed areas (Proceedings of International Workshop held in May 15–19, 1989) (pp. 179–198). Ankara/Turkey/Aleppo/Syria: International Center for Agricultural Research in Dry Areas s (ICARDA).Google Scholar
  33. Herridge, D. F., Peoples, M. B., & Boddey, R. M. (2008). Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 311, 1–18.CrossRefGoogle Scholar
  34. Hillel, D. (1994). Rivers of Eden (pp. 221–225). New York: Oxford University Press.Google Scholar
  35. Hobbs, P. R., Ken, S., & Raj, G. (2008). The role of conservation agriculture in sustainable agriculture. Philosophical Transactions of the Royal Society B, 363, 543–555.CrossRefGoogle Scholar
  36. IFPRI. (1997a). Water resources in the twenty-first century: Challenges and implications for action. Washington, DC: International Food Policy Research Institute.Google Scholar
  37. IFPRI. (1997b). The world food situation: Recent developments, emerging issues and long term prospects (Vision 2020 Food Policy Report). Washington, DC: International Food Policy Research Institute.Google Scholar
  38. IPCC. (2001). In R. T. Watson (Ed.), Climate change 2001: Synthesis report. Cambridge: Cambridge University Press.Google Scholar
  39. Keating, B. A., & Carberry, P. S. (1993). Resource capture and use in intercropping-solar radiation. Field Crops Research, 34, 273–301.CrossRefGoogle Scholar
  40. Kichey, T., Hirel, B., Heumez, E., Dubois, F., & Le Gouis, J. (2007). In winter wheat (Triticum aestivum L.) post-anthesis nitrogen uptake and remobilization to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crops Research, 102, 22–32.CrossRefGoogle Scholar
  41. Kijne, J. W., Tuong, T. R., Bennett, J., Bowman, B., & Oweis, T. (2002). Ensuring food security via improvement in crop water productivity. In Background paper 1, challenge program for water and food. Washington, DC: Consultative Group for International Agricultural Research.Google Scholar
  42. Ladha, J. K., Pathak, H., Krupnik, T. J., Six, J., & van Kessel, C. (2005). Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Advances in Agronomy, 87, 85–156.CrossRefGoogle Scholar
  43. Lemaire, G., Oosterom, E., Sheehy, J., Jeuffroy, M. H., Massignam, A., & Rossato, L. (2007). Is crop N demand more closely related to dry matter accumulation or leaf area expansion during vegetative growth? Field Crops Research, 100, 91–106.CrossRefGoogle Scholar
  44. Lopez-Bellido, R. J., Castillo, J. E., & Lopez-Bellido, L. (2008). Comparative response of bread and durum wheat cultivars to nitrogen fertilizer in a rainfed Mediterranean environment: Soil nitrate and N uptake and efficiency. Nutrient Cycling in Agroecosystems, 80, 121–130.CrossRefGoogle Scholar
  45. Martre, P., Semenov, M. A., & Jamieson, P. D. (2007). Simulation analysis of physiological traits to improve yield, nitrogen use efficiency and grain protein concentration in wheat. In J. H. J. Spiertz, P. C. Struik, & H. H. Van Laar (Eds.), Scale and complexity in plant systems research: Gene-plant-crop relations (Gene-plant-crop relations, Wageningen UR Frontis Series) (pp. 181–201). Berlin: Springer.CrossRefGoogle Scholar
  46. Massey, R. E., Myers, D. B., Kitchen, N. R., & Sudduth, K. A. (2008). Profitability maps as an input for site-specific management decision making. Agronomy Journal, 100, 52–59.CrossRefGoogle Scholar
  47. McGinn, A. P. (1999). Safeguarding the health of oceans (Paper 145). Washington, DC: World Watch Institute.Google Scholar
  48. Molden, D. J. (1997). Accounting for water use and productivity (SWIM Paper 1). Colombo: International Irrigation Management Institute.Google Scholar
  49. Myers, N. (1997). Perverse Subsidies: Their Nature, Scales and Impacts. Chicago: McArthur Foundation.Google Scholar
  50. Nair, K. P. P. (1996). The buffering power of plant nutrients and effects on availability. Advances in Agronomy, 57, 237–287.CrossRefGoogle Scholar
  51. Nicholls, R. J., & Leatherman, S. P. (1995). Global sea levels rise. In K. M. Strzepek & J. B. Smith (Eds.), As climate changes: International impacts and implications (pp. 92–123). Cambridge: Cambridge University Press.Google Scholar
  52. NRC. (1999). Our common journey: A transition towards sustainability. Washington, DC: National Academy Press.Google Scholar
  53. Oldeman, L. R. (1994). The global extent of soil degradation. In D. J. Greenland & I. Szabolcs (Eds.), Soil resilience and sustainable land use (pp. 99–118). Wallingford: CAB International.Google Scholar
  54. Orr, A., Islam, A. S. M. N., & Barnes, G. (1991). Treadle Pump: Manual irrigation for small farmers in Bangladesh. Dhaka: Dinajpur Rural Services.Google Scholar
  55. Peng, S., & Bouman, B. A. M. (2007). Prospects for genetic improvement to increase lowland rice yields with less water and nitrogen. In J. H. J. Spiertz, P. C. Struik, & H. H. Van Laar (Eds.), Scale and complexity in plant systems research: Gene-Plant-Crop relations (pp. 251–266). Berlin: Springer.CrossRefGoogle Scholar
  56. Perry, C. J., Rock, M., & Seckler, D. (1997). Water as economic good: A solution or a problem. In Research report 14. Colombo: International Irrigation Management Institute.Google Scholar
  57. Pierce, F. P., & Nowak, P. (1999). Aspects of precision farming. Advances in Agronomy, 67, 1–85.CrossRefGoogle Scholar
  58. Postel, S. (1992). The last oasis: Facing water scarcity. London: Earthscan.Google Scholar
  59. Postel, S. (1996). Dividing the waters: Food security, ecosystem health and the new politics of scarcity. World watch paper 132. Washington, DC: World watch Institute.Google Scholar
  60. Postel, S. (1998). Water for food production: Will there be enough in 2025? Bio Science, 48, 629–637.Google Scholar
  61. Postel, S. (1999). Pillars of sand: Can the irrigation miracle last? New York: W.W.Norton.Google Scholar
  62. Postel, S. (2001). Drip irrigation for small farms: A new initiative to alleviate hunger and poverty. Water International, 26(1), 3–13.CrossRefGoogle Scholar
  63. Postel, S., & Carpenter, S. (1997). Freshwater ecosystem services. In G. C. Daily (Ed.), Nature’s services: Societal dependence on natural ecosystems (pp. 195–214). Washington, DC: Island Press.Google Scholar
  64. Raman, S. (1989). Adsorption of metoxuron and tebuthiuron on model clay-organo complexes. Toxicological and Environmental Chemistry, 24, 207–213.CrossRefGoogle Scholar
  65. Richards, R. A., Lopez-Castaneda, C., Gomez-Macpherson, H., & Condon, A. G. (1993). Improving the efficiency of water use by plant breeding and molecular biology Irrigation. Science, 14, 93–104.Google Scholar
  66. Rockstrom, J., Barron, J., & Fox, P. (2002). Water productivity in rainfed agriculture: Challenges and opportunities for smallholder farmers in drought-prone tropical agroecosystems. In J. K. Kijne, R. B. Barker, & D. Molden (Eds.), Water productivity in agriculture: Limits and opportunities for improvement (pp. 145–162). Wallingford: CAB International.Google Scholar
  67. Rosengrant, M. W., & Ringler, C. (1999). Impact on food security and rural development of reallocating water from agriculture. Washington, DC: International Food Policy Research Institute.Google Scholar
  68. Russell, G., Jarvis, P. G., & Monteith, J. L. (1989). Absorption of radiation by canopies and stand growth. In G. Russell (Ed.), Plant Canopy: Their growth, form and function (pp. 21–39). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  69. Saito, K., Atlin, G. N., Linquist, B., Phanthaboon, K., Shiraiwa, T., & Horie, T. (2007). Performance of traditional and improved upland rice cultivars under nonfertilized and fertilized conditions in northern Laos. Crop Science, 47, 2473–2481.CrossRefGoogle Scholar
  70. Samonte, S. O. P. B., Wilson, L. T., Medley, J. C., Pinson, S. R. M., Clung, A. M., & Lales, J. S. (2006). Nitrogen utilization efficiency: Relationships with grain yield, grain protein and yield-related traits in rice. Agronomy Journal, 98, 168–176.CrossRefGoogle Scholar
  71. Seckler, D., Molden, D., & Barker, R. (1998). Water scarcity in the twenty-first century (Water Brief 1). Colombo: International Water Management Institute.Google Scholar
  72. Shah, T. (1993). Ground water markets and irrigation development. Bombay: Oxford University Press.Google Scholar
  73. Sinclair, T. R., Tanner, C. B., & Bennett, J. (1984). Water-use efficiency in crop production. BioScience, 34, 36–40.CrossRefGoogle Scholar
  74. Sivanappan, R. K. (1994). Prospects of micro irrigation in India. Irrigation and Drainage Systems, 8, 49–58.CrossRefGoogle Scholar
  75. Tuong, T. P. (1999). Productive water use in rice production: Opportunities and limitations. Journal of Crop Production, 2(2), 241–264.CrossRefGoogle Scholar
  76. Tyagi, N. K. (2002). Managing saline and alkaline water for higher productivity. In J. W. Kijne, R. Barker, & D. Molden (Eds.), Water productivity in agriculture: Limits and opportunities for improvement (pp. 69–87). Wallingfrord: CAB International.Google Scholar
  77. Umali, D. L. (1993). Irrigation induced salinity. Washington, DC: World Bank.CrossRefGoogle Scholar
  78. UNDP. (1995). The Aral in Crisis: United Nations development project, Tashkent, Russia. New York: United Nations Publications Division.Google Scholar
  79. UNEP. (2007). Reactive nitrogen in the environment. In Too much or too little of a good thing (Vol. 51). Paris: The Woods Hole Research Center, USA/UNEP DTIE Sustainable Consumption and Production Branch. ISBN 978 92 807 2783 8.Google Scholar
  80. Van Delden, A. (2001). Yield and growth components of potato and wheat under organic nitrogen management. Agronomy Journal, 93, 1370–1385.CrossRefGoogle Scholar
  81. Van Ginkel, M., Ortiz-Monasterio, I., Trethowan, R., & Hernandez, E. (2001). Methodology for selecting segregating populations for improved N-use efficiency in bread wheat. Euphytica, 119, 223–230.CrossRefGoogle Scholar
  82. WRI. (2000). World resources 2000–2001. People and ecosystems, the Fraying web of life. Washington, DC: World Resources Institute.Google Scholar
  83. WSSD. (2002). World summit for sustainable development. United Nations conference on environment and development, August 26 – September 4, Johannesburg, South AfricaGoogle Scholar
  84. Yin, X., & Van Laar, H. H. (2005). Crop systems dynamics: An ecophysiological simulation model for genotype-by-environment interactions (p. 153). Wageningen: Wageningen Academic Publishers. ISBN 907 69 985 82.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kodoth Prabhakaran Nair
    • 1
  1. 1.International Agricultural Scientistc/o Mavila PankajakshyCalicutIndia

Personalised recommendations