Advertisement

Bioinformatics Tools for Soil Microbiome Analysis

  • Rama Kant Dubey
  • Vishal Tripathi
  • Ratna Prabha
  • Rajan Chaurasia
  • Dhananjaya Pratap Singh
  • Ch. Srinivasa Rao
  • Ali El-Keblawy
  • Purushothaman Chirakkuzhyil Abhilash
Chapter
Part of the SpringerBriefs in Environmental Science book series (BRIEFSENVIRONMENTAL)

Abstract

Metagenomic approaches aid in exploring the structural and functional diversity of soil microorganisms. Sequence analysis of the large amount of data generated from soil microbial communities sequencing is a challenging issue. It is made feasible through bioinformatics tools, which provide sequence pipelines for the high-throughput screening of the soil metagenomic libraries. Such sequence analysis of metagenomic datasets reveals the genetic structure, gene prediction, proposed functions, and metabolic pathways of the analyzed microbial communities. Bioinformatic tools provide statistical procedures not only for comparison of metagenomic libraries but also to report the sampling and library creation artifacts. Here we discuss the bioinformatics tools for accessing the metagenomic information and platforms for data storage within databases (GenBank env), access, synthesis, and analysis.

Keywords

Bioinformatics Functional diversity Gene prediction Metagenomic Structural diversity Microbial taxonomy Metabolic pathways 

References

  1. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL et al (2012) Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 8:e1002358CrossRefGoogle Scholar
  2. Albantoglu OU, Way SF, Hinrichs SH, Sayood K (2011) RAIphy: phylogenetic classification of metagenomics samples using iterative refinement of relative abundance index profiles. BMC Bioinform 12:41CrossRefGoogle Scholar
  3. Arumugam M, Harrington ED, Foerstner KU, Raes J, Bork P (2010) Smash Community: a metagenomic annotation and analysis tool. Bioinformatics 26:2977–2978CrossRefGoogle Scholar
  4. Berger SA, Stamatakis A (2011) Aligning short reads to reference alignments and trees. Bioinformatics 27:2068–2075CrossRefGoogle Scholar
  5. Brady A, Salzberg S (2011) PhymmBL expanded: confidence scores, custom databases, parallelization and more. Nat Methods 8(5):367.  https://doi.org/10.1038/nmeth0511-367CrossRefGoogle Scholar
  6. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145CrossRefGoogle Scholar
  7. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072CrossRefGoogle Scholar
  8. Diaz NN, Krause L, Goesmann A, Niehaus K, Nattkemper TW (2009) TACOA: taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach. BMC Bioinform 10:56CrossRefGoogle Scholar
  9. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J et al (2012) Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol 8:e1002606CrossRefGoogle Scholar
  10. Friedman J, Alm EJ (2012) Inferring Correlation Networks from Genomic Survey Data. PLoS Comput Biol 8:e1002687CrossRefGoogle Scholar
  11. Gerlach W, Stoye J (2011) Taxonomic classification of metagenomic shotgun sequences with CARMA3. Nucleic Acids Res 39:e91CrossRefGoogle Scholar
  12. Ghosh TS, Monzoorul Haque M, Mande SS (2010) DiScRIBinATE: a rapid method for accurate taxonomic classification of metagenomic sequences. BMC Bioinform 7:S14CrossRefGoogle Scholar
  13. Goll J, Rusch DB, Tanenbaum DM, Thiagarajan M, Li K, Methé BA, Yooseph S (2010) METAREP: JCVI metagenomics reports-an open source tool for high-performance comparative metagenomics. Bioinformatics 26:2631–2632CrossRefGoogle Scholar
  14. Gori F, Folino G, Jetten MS, Marchiori E (2011) MTR: taxonomic annotation of short metagenomic reads using clustering at multiple taxonomic ranks. Bioinformatics 27:196–203CrossRefGoogle Scholar
  15. Harrington ED, Arumugam M, Raes J, Bork P, Relman DA (2010) SmashCell: a software framework for the analysis of single-cell amplified genome sequences. Bioinformatics 26:2979–2980CrossRefGoogle Scholar
  16. Hoff KJ, Lingner T, Meinicke P, Tech M (2009) Orphelia: predicting genes in metagenomic sequencing reads. Nucleic Acids Res 37:W101–W105CrossRefGoogle Scholar
  17. Horton M, Bodenhausen N, Bergelson J (2010) MARTA: a suite of Java-based tools for assigning taxonomic status to DNA sequences. Bioinformatics 26:568–569CrossRefGoogle Scholar
  18. Hunter S, Corbett M, Denise H, Fraser M, Gonzalez-Beltran A, Hunter C, Jones P, Leinonen R, McAnulla C, Maguire E, Maslen J, Mitchell A, Nuka G, Oisel A, Pesseat S, Radhakrishnan R, Rocca-Serra P, Scheremetjew M, Sterk P, Vaughan D, Cochrane G, Field D, Sansone SA (2014a) metagenomics-a new resource for the analysis and archiving of metagenomic data. Nucleic Acids Res 42:D600–D606CrossRefGoogle Scholar
  19. Hunter S, Corbett M, Denise H, Fraser M, Gonzalez-Beltran A, Hunter C, Jones P, Leinonen R, McAnulla C, Maguire E, Maslen J, Mitchell A, Nuka G, Oisel A, Pesseat S, Radhakrishnan R, Rocca-Serra P, Scheremetjew M, Sterk P, Vaughan D, Cochrane G, Field D, Sansone SA (2014b) EBI metagenomics-a new resource for the analysis and archiving of metagenomic data. Nucleic Acids Res 42:D600–D606CrossRefGoogle Scholar
  20. Huse SM, Mark Welch DB, Voorhis A, Shipunova A, Morrison HG, Eren AM, Sogin ML (2014) VAMPS: a website for visualization and analysis of microbial population structures. BMC Bioinform 15:41CrossRefGoogle Scholar
  21. Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17:377–386CrossRefGoogle Scholar
  22. Hyland C, Pinney JW, McConkey GA, Westhead DR (2006) metaSHARK: a WWW plateform for interactive exploration of metabolic networks. Nucleic Acids Res 34:W725–W728CrossRefGoogle Scholar
  23. Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, Bushman FD, Knight R, Kelley ST (2011) Bayesian community-wide culture-independent microbial source tracking. Nat Methods 8:761–763CrossRefGoogle Scholar
  24. Kristiansson E, Hugenholtz P, Dalevi D (2009) ShotgunFunctionalizeR: an R-package for functional comparison of metagenomes. Bioinformatics 25:2737–2738CrossRefGoogle Scholar
  25. Kultima JR, Sunagawa S, Li J, Chen W, Chen H, Mende DR, Arumugam M, Pan Q, Liu B, Qin J, Wang J, Bork P (2012) MOCAT: a metagenomics assembly and gene prediction toolkit. PLoS One 7:e47656CrossRefGoogle Scholar
  26. Larsen PE, Collart FR, Field D, Meyer F, Keegan KP, Henry CS, McGrath J, Quinn J, Gilbert JA (2011) Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset. Microb Inf Exp 1:4CrossRefGoogle Scholar
  27. Laserson J, Jojic V, Koller D (2011) Genovo: de novo assembly for metagenomes. J Comput Biol 18:429–443CrossRefGoogle Scholar
  28. Li W (2009) Analysis and comparison of very large metagenomes with fast clustering and functional annotation. BMC Bioinform 10:359.  https://doi.org/10.1186/1471-2105-10-359CrossRefGoogle Scholar
  29. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272CrossRefGoogle Scholar
  30. Liu B, Gibbons T, Ghodsi M, Treangen T, Pop M (2011) Accurate and fast estimation of taxonomic profiles from metagenomic shotgun sequences. BMC Genomics 2:S4CrossRefGoogle Scholar
  31. Markowitz VM, Chen IM, Chu K, Szeto E, Palaniappan K, Grechkin Y, Ratner A, Jacob B, Pati A, Huntemann M, Liolios K, Pagani I, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC (2012) IMG/M: the integrated metagenome data management and comparative analysis system. Nucleic Acids Res 40:D123–D129CrossRefGoogle Scholar
  32. McElroy KE, Luciani F, Thomas T (2012) GemSIM: general, error-model based simulator of next-generation sequencing data. BMC Genomics 13:74CrossRefGoogle Scholar
  33. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386CrossRefGoogle Scholar
  34. Mohammed MH, Ghosh TS, Reddy RM, Reddy CV, Singh NK, Mande SS (2011) INDUS – a composition-based approach for rapid and accurate taxonomic classification of metagenomic sequences. BMC Genomics 3:S4CrossRefGoogle Scholar
  35. Monzoorul Haque M, Ghosh TS, Komanduri D, Mande SS (2009) SOrt-ITEMS: Sequence orthology based approach for improved taxonomic estimation of metagenomic sequences. Bioinformatics 25:1722–1730CrossRefGoogle Scholar
  36. Nalbantoglu OU, Way SF, Hinrichs SH, Sayood K (2011) RAIphy: phylogenetic classification of metagenomics samples using iterative refinement of relative abundance index profiles. BMC Bioinform 12:41.  https://doi.org/10.1186/1471-2105-12-41CrossRefGoogle Scholar
  37. Namiki T, Hachiya T, Tanaka H, Sakakibara Y (2012) MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res 40:e155CrossRefGoogle Scholar
  38. Noguchi H, Taniguchi T, Itoh T (2008) MetaGeneAnnotator: detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes. DNA Res 15:387–396CrossRefGoogle Scholar
  39. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124CrossRefGoogle Scholar
  40. Pati A, Heath LS, Kyrpides NC, Ivanova N (2011) ClaMS: a classifier for metagenomic sequences. Stand Genomic Sci 5:248–253CrossRefGoogle Scholar
  41. Patil KR, Roune L, McHardy AC (2012) The PhyloPythiaS web server for taxonomic assignment of metagenome sequences. PLoS One 7(6):e38581.  https://doi.org/10.1371/journal.pone.0038581CrossRefGoogle Scholar
  42. Paulson JN, Pop M, Bravo HC (2011) Metastats: an improved statistical method for analysis of metagenomic data. Genome Biol 12:P17CrossRefGoogle Scholar
  43. Pell J, Hintze A, Canino-Koning R, Howe A, Tiedje JM, Brown CT (2012) Scaling metagenome sequence assembly with probabilistic de Bruijn graphs. Proc Natl Acad Sci U S A 109:13272–13277CrossRefGoogle Scholar
  44. Peng Y, Henry CM, Leung S, Yiu M, Francis Y, Chin L (2011) Meta-IDBA: a de Novo assembler for metagenomic data. Bioinformatics 27:i94–i101CrossRefGoogle Scholar
  45. Peng Y, Leung HC, Yiu SM, Chin FY (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28:1420–1428CrossRefGoogle Scholar
  46. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196CrossRefGoogle Scholar
  47. Rho M, Tang H, Ye Y (2010) FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res 38:e191CrossRefGoogle Scholar
  48. Richter DC, Ott F, Auch AF, Schmid R, Huson DH (2008) MetaSim: a sequencing simulator for genomics and metagenomics. PLoS One 3:e3373CrossRefGoogle Scholar
  49. Rosen GL, Reichenberger ER, Rosenfeld AM (2011) NBC: the Naïve Bayes Classification tool webserver for taxonomic classification of metagenomic reads. Bioinformatics 27:127–129CrossRefGoogle Scholar
  50. Schreiber F, Gumrich P, Daniel R, Meinicke P (2010) Treephyler: fast taxonomic profiling of metagenomes. Bioinformatics 26:960–961CrossRefGoogle Scholar
  51. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60CrossRefGoogle Scholar
  52. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C (2012) Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 9:811–814CrossRefGoogle Scholar
  53. Segata N, Boernigen D, Tickle TL, Morgan XC, Garrett WS, Huttenhower C (2013) Computational meta’omics for microbial community studies. Mol Syst Biol 9:666.  https://doi.org/10.1038/msb.2013.22CrossRefGoogle Scholar
  54. Seshadri R, Kravitz SA, Smarr L, Gilna P, Frazier M (2007) CAMERA: a community resource for metagenomics. PLoS Biol 5:e75CrossRefGoogle Scholar
  55. Treangen GJ, Koren S, Sommer DD, Liu B, Astrovskaya I, Ondov B, Darling AE, Phillippy AM, Pop M (2013) MetAMOS: a modular and open source metagenomic assembly and analysis pipeline. Genome Biol 14:R2CrossRefGoogle Scholar
  56. Wang Y, Leung HC, Yiu SM, Chin FY (2012) MetaCluster 4.0: a novel binning algorithm for NGS reads and huge number of species. J Comput Biol 19:241–249CrossRefGoogle Scholar
  57. Wilke A, Bischof J, Gerlach W, Glass E, Harrison T, Keegan KP, Paczian T, Trimble WL, Bagchi S, Grama A, Chaterji S, Meyer F (2016) The MG-RAST metagenomics database and portal in 2015. Nucleic Acids Res 4:44Google Scholar
  58. Wu M, Scott AJ (2012) Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 28:1033–1034CrossRefGoogle Scholar
  59. Ye Y, Tang H (2009) An ORFome assembly approach to metagenomics sequences analysis. J Bioinforma Comput Biol 7:455–471CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rama Kant Dubey
    • 1
  • Vishal Tripathi
    • 1
  • Ratna Prabha
    • 2
  • Rajan Chaurasia
    • 1
  • Dhananjaya Pratap Singh
    • 3
  • Ch. Srinivasa Rao
    • 4
  • Ali El-Keblawy
    • 5
  • Purushothaman Chirakkuzhyil Abhilash
    • 1
  1. 1.Institute of Environment & Sustainable DevelopmentBanaras Hindu UniversityVaranasiIndia
  2. 2.Chhattisgarh Swami Vivekananda Technical UniversityBhilaiIndia
  3. 3.ICAR-National Bureau of Agriculturally Important MicroorganismsMau Nath BhanjanIndia
  4. 4.National Academy of Agricultural Research ManagementHyderabadIndia
  5. 5.Department of Applied BiologyUniversity of SharjahSharjahUnited Arab Emirates

Personalised recommendations