Advertisement

Metatranscriptomics and Metaproteomics for Microbial Communities Profiling

  • Rama Kant Dubey
  • Vishal Tripathi
  • Ratna Prabha
  • Rajan Chaurasia
  • Dhananjaya Pratap Singh
  • Ch. Srinivasa Rao
  • Ali El-Keblawy
  • Purushothaman Chirakkuzhyil Abhilash
Chapter
Part of the SpringerBriefs in Environmental Science book series (BRIEFSENVIRONMENTAL)

Abstract

Metatranscriptomics and metaproteomics are major breakthroughs of the next-generation sequencing technologies. Metatranscriptomics and metaproteomics not only provide information about the taxonomic structure of the microorganisms in soil but also provide information about their functional attributes and diversity. Gene expression under varying environmental conditions can be analysed by polymerase chain reactions and microarray. Similarly, techniques such as metatranscriptomics can be used for genome-wide gene expression analysis, providing novel insights about the ecology of the microorganism-mediated processes. In the present chapter we have highlighted the importance, benefits, challenges, process, and procedures of metatranscriptomics and metaproteomics for analysing microbial communities from diverse environments. Metatranscriptomics and metaproteomics have carried out significant revolutions in the field of microbial ecology via exploring the plant–microbe and microbe–microbe interactions.

Keywords

Functional genomics Microbial diversity Metatranscriptome Metaproteome Microbial interactions 

References

  1. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL et al (2012) Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 8:e1002358CrossRefGoogle Scholar
  2. Aguiar-Pulido V, Huang W, Suarez-Ulloa V, Cickovski T, Mathee K, Narasimhan G (2016) Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis: supplementary issue: bioinformatics methods and applications for big metagenomics data. Evol Bioinform 12:EBO-S36436Google Scholar
  3. Anderson LB, Maderia M, Ouellette AJA, Putman-Evans C, Higgins L, Krick T, MacCoss MJ, Lim H, Yates JR, Barry BA (2002) Post translational modifications in the CP43 subunit of photosystem II. Proc Natl Acad Sci U S A 23:14676–14681CrossRefGoogle Scholar
  4. Bashiardes S, Shapiro H, Rozin S, Shibolet O, Elinav E (2016a) Non-alcoholic fatty liver and the gut microbiota. Mol Metab 5:782–794CrossRefGoogle Scholar
  5. Bashiardes S, Zilberman-Schapira G, Elinav E (2016b) Use of metatranscriptomics in microbiome research. Bioinform Biol Insights 10:BBI-S34610.  https://doi.org/10.4137/BBI.S34610. eCollection 2016CrossRefGoogle Scholar
  6. Bastida F, Moreno JL, Nicolas C, Hernandez T, Garcia C (2009) Soil metaproteomics: a review of an emerging environmental science. significance, methodology and perspectives. Eur J Soil Sci 60:845–859CrossRefGoogle Scholar
  7. Benndorf D, Balcke GU, Harms H, von Bergen M (2007) Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. ISME J 1:224–234CrossRefGoogle Scholar
  8. Beverley SM et al (2002) Putting the Leishmania genome to work: functional genomics by transposon trapping and expression profiling. Philos Trans R Soc Lond B 357:47–53CrossRefGoogle Scholar
  9. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120CrossRefGoogle Scholar
  10. Carvalhais LC, Dennis PG, Tyson GW, Schenk PM (2012) Application of metatranscriptomics to soil environments. J Microbiol Methods 91:246–251CrossRefGoogle Scholar
  11. Chauhan A, Smartt A, Wang J, Utturkar S, Frank A, Bi M, Arreaza A (2014) Integrated metagenomics and metatranscriptomics analyses of root-associated soil from transgenic switchgrass. Genome Announc 2(4):e00777–e00714.  https://doi.org/10.1128/genomeA.00777-14CrossRefGoogle Scholar
  12. Chen LX, Hu M, Huang LN, Hua ZS, Kuang JL, Li SJ, Shu WS (2015) Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. ISME J 9(7):1579–1592CrossRefGoogle Scholar
  13. Choksawangkarn W, Edwards N, Wang Y, Gutierrez P, Fenselau C (2012) Comparative study of workflows optimized for in-gel, in-solution, and on-filter proteolysis in the analysis of plasma membrane proteins. J Proteome Res 11:3030–3034CrossRefGoogle Scholar
  14. Chourey K, Jansson J, VerBerkmoes N, Shah M, Chavarria KL, Tom LM, Brodie EL, Hettich RL (2010) Direct cellular lysis/protein extraction protocol for soil metaproteomics. J Proteome Res 9:6615–6622CrossRefGoogle Scholar
  15. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676CrossRefGoogle Scholar
  16. Damon C, Lehembre F, Oger-Desfeux C, Luis P, Ranger J, Fraissinet-Tachet L, Marmeisse R (2012) Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils. PLoS One 7(1):e28967.  https://doi.org/10.1371/journal.pone.0028967CrossRefGoogle Scholar
  17. Delahunty CM, Yates JR (2007) MudPIT: multidimensional protein identification technology. BioTechniques 43:563–567Google Scholar
  18. Dumont MG, Murrell JC (2005) Stable isotope probing-linking microbial identity to function. Nat Rev Microbiol 3:499–504Google Scholar
  19. Ferrer M, Ruiz A, Lanza F, Haange SB, Oberbach A, Till H, Bargiela R, Campoy C, Segura MT, Richter M, von Bergen M, Seifert J, Suarez A (2013) Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure. Environ Microbiol 15:211–226CrossRefGoogle Scholar
  20. Fic E, Kedracka-Krok S, Jankowska U, Pirog A, Dziedzicka-Wasylewska M (2010) Comparison of protein precipitation methods for various rat brain structures prior to proteomic analysis. Electrophoresis 31:3573–3579CrossRefGoogle Scholar
  21. Franzosa EA, Morgan XC, Segata N, Waldron L, Reyes J, Earl AM, Izard J (2014) Relating the metatranscriptome and metagenome of the human gut. Proc Natl Acad Sci 111:E2329–E2338.  https://doi.org/10.1073/pnas.1319284111CrossRefGoogle Scholar
  22. Ghosh S, Chan CKK (2016) Analysis of RNA-Seq data using TopHat and Cufflinks. In: Plant bioinformatics. Humana Press, New York, pp 339–361CrossRefGoogle Scholar
  23. Giagnoni L, Magherini F, Landi L, Taghavi S, van der Lelie D, Puglia M, Bianchi L, Bini L, Nannipieri P, Renella G, Modesti A (2012) Soil solid phases effects on the proteomic analysis of Cupriavidus metallidurans CH34. Biol Fertil Soils 48:425–433CrossRefGoogle Scholar
  24. Glass EM, Wilkening J, Wilke A, Antonopoulos D, Meyer F (2010) Using the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring Harb Protoc.  https://doi.org/10.1101/pdb.prot5368CrossRefGoogle Scholar
  25. Gosalbes MJ, Durbán A, Pignatelli M, Abellan JJ, Jiménez-Hernández N, Pérez-Cobas AE, Moya A (2011) Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One 6:e17447.  https://doi.org/10.1371/journal.pone.0017447CrossRefGoogle Scholar
  26. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Chen Z (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652CrossRefGoogle Scholar
  27. Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersol R (2000) Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci U S A 97:9390–9395CrossRefGoogle Scholar
  28. Hettich RL, Chourey K, Jansson J, VerBerkmoes N, Shah M, Chavarria KL, Tom LM, Brodie EL (2010) Direct cellular Lysis/protein extraction protocol for soil metaproteomics. J Proteome Res 9:6615–6622CrossRefGoogle Scholar
  29. Hettich RL, Pan C, Chourey K, Giannone RJ (2013) Metaproteomics: harnessing the power of high performance mass spectrometry to identify the suite of proteins that control metabolic activities in microbial communities. Anal Chem 85:4203–4214CrossRefGoogle Scholar
  30. Jiang L, He L, Fountoulakis M (2004) Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J Chromatogr A 1023:317–320CrossRefGoogle Scholar
  31. Kan J, Hanson TE, Ginter JM, Wang K, Chen F (2005) Metaproteomic analysis of Chesapeake Bay microbial communities. Saline Syst 1:7–10CrossRefGoogle Scholar
  32. Keiblinger KM, Wilhartitz IC, Schneider T, Roschitzki B, Schmid E, Eberl L, Riedel K, Zechmeister-Boltenstern S (2012) Soil metaproteomicse comparative evaluation of protein extraction protocols. Soil Biol Biochem 54:14–24CrossRefGoogle Scholar
  33. Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26:231–243Google Scholar
  34. Köcher T, Pichler P, Swart R, Mechtler K (2012) Analysis of protein mixtures from whole-cell extracts by single-run nanoLC-MS/MS using ultralong gradients. Nat Protoc 7:882–890CrossRefGoogle Scholar
  35. Kolmeder CA, de Been M, Nikkilä J, Ritamo I, Mättö J, Valmu L, Salojärvi J, Palva A, Salonen A, de Vos WM (2012) Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS One 7:e29913–e29910CrossRefGoogle Scholar
  36. Korf BR, Rehm HL (2013) New approaches to molecular diagnosis. JAMA 309:1511–1521CrossRefGoogle Scholar
  37. Lacerda CMR, Choe LH, Reardon KF (2007) Metaproteomic analysis of a bacterial community response to cadmium exposure. J Proteome Res 6:1145–1152CrossRefGoogle Scholar
  38. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie2. Nat Methods 9:357–359CrossRefGoogle Scholar
  39. Leary DH, Hervey WJ, Li RW, Deschamps JR, Kusterbeck AW, Vora GJ (2012) Method development for metaproteomic analyses of marine biofilms. Anal Chem 84:4006–4013CrossRefGoogle Scholar
  40. Lee KH (2001) Proteomics: a technology-driven and technology-limited discovery science. Trends Biotechnol 19:217–222CrossRefGoogle Scholar
  41. Lehninger AL (1965) Bioenergetics: The molecular basis of biological energy transformations. W. A. Benjamin, New York. pp xv, 258Google Scholar
  42. Mann M, Pandey A (2001) Use of mass spectrometry-derived data to annotate nucleotide and protein sequence databases. Trends Biochem Sei 26:54–61.  https://doi.org/10.1016/S0968-0004(00)01726-6CrossRefGoogle Scholar
  43. Marco-Sola S, Sammeth M, Guigó R, Ribeca P (2012) The GEM mapper: fast, accurate and versatile alignment by filtration. Nat Methods 9:1185–1188CrossRefGoogle Scholar
  44. Maron PA, Ranjard L, Mougel C, Lemanceau P (2007) Metaproteomics: a new approach for studying functional microbial ecology. Microb Ecol 53:486–493CrossRefGoogle Scholar
  45. Martin HG, Ivanova N, Kunin V, Warnecke F, Barry KW, McHardy AC, Yeates C, He SM, Salamov AA, Szeto E, Dalin E, Putnam NH, Shapiro HJ, Pangilinan JL, Rigoutsos I, Kyrpides NC, Blackall LL, McMahon KD, Hugenholtz P (2006) Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol 24:1263–1269CrossRefGoogle Scholar
  46. Mocali S, Benedetti A (2010) Exploring research frontiers in microbiology: the challenge of metagenomics in soil microbiology. Res Microbiol 161:497–505CrossRefGoogle Scholar
  47. Molina LG, Cordenonsi da Fonseca G, Morais GLD, de Oliveira LFV, Carvalho JBD, Kulcheski FR, Margis R (2012) Metatranscriptomic analysis of small RNAs present in soybean deep sequencing libraries. Genet Mol Biol 35:292–303CrossRefGoogle Scholar
  48. Moran MA (2009) Metatranscriptomics: eavesdropping on complex microbial communities. Microbe 4:329–335Google Scholar
  49. Morgan XC, Huttenhower C (2014) Meta-omic analytic techniques for studying the intestinal microbiome. Gastroenterology 146:1437–1448CrossRefGoogle Scholar
  50. Nannipieri P, Smalla K (2006) Role of stabilised enzymes in microbial ecology and enzyme extraction from soil with potential applications in soil proteomics nucleic acids and proteins in soil. Springer, Berlin/Heidelberg, pp 75–94Google Scholar
  51. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021Google Scholar
  52. Ogunseitan OA (1993) Direct extraction of proteins from environmental samples. J Microbiol Methods 17:273–281CrossRefGoogle Scholar
  53. Ogunseitan OA (1996) Protein profile in cultivated and native freshwater microorganisms exposed to chemical environmental pollutants. Microb Ecol 31:291–304CrossRefGoogle Scholar
  54. Ogunseitan OA (1997) Direct extraction of catalytic proteins from natural microbial communities. J Microbiol Methods 28:55–63CrossRefGoogle Scholar
  55. Ogunseitan O (2005) Microbial diversity: form and function in prokaryotes. Blackwell Science Ltd, Malden, p 142Google Scholar
  56. Pandey A, Lewitter F (1999) Nucleotide sequence databases: a gold mine for biologists. Trends Biochem Sci 24:276–280CrossRefGoogle Scholar
  57. Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846CrossRefGoogle Scholar
  58. Peano C, Pietrelli A, Consolandi C, Rossi E, Petiti L, Tagliabue L, Landini P (2013) An efficient rRNA removal method for RNA sequencing in GC-rich bacteria. Microb Inform Exp 3:1.  https://doi.org/10.1186/2042-5783-3-1CrossRefGoogle Scholar
  59. Pedersen S, Bloch PL, Reeh S, Neidhardt FC (1978) Patterns of protein synthesis in E. coli: a catalog of the amount of 140 individual proteins at different growth rates. Cell 14:179–190CrossRefGoogle Scholar
  60. Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC−MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2:43–45CrossRefGoogle Scholar
  61. Perez-Cobas AE, Gosalbes MJ, Friedrichs A, Knecht H, Artacho A, Eismann K, Otto W, Rojo D, Bargiela R, von Bergen M, Neulinger SC, Däumer C, Heinsen FA, Latorre A, Barbas C, Seifert J, dos Santos VM, Ott SJ, Ferrer M, Moya A (2013) Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 62:1591–1601CrossRefGoogle Scholar
  62. Poretsky RS, Bano N, Buchan A, LeCleir G, Kleikemper J, Pickering M, Hollibaugh JT (2005) Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71:4121–4126CrossRefGoogle Scholar
  63. Ram RJ, VerBerkmoes NC, Thelen MP, Tyson GW, Baker BJ, Blake RC II, Shah M, Hettich RL, Banfield JF (2005) Community proteomics of a natural microbial biofilm. Science 308:1915–1920CrossRefGoogle Scholar
  64. Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau AY, Walter JC, LaBaer J (2004) Self-assembling protein microarrays. Science 305:86–90CrossRefGoogle Scholar
  65. Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, Richter A, Eberl L, Zechmeister-Boltenstern S, Riedel K (2012) Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J 6:1749–1762CrossRefGoogle Scholar
  66. Schulze WX, Gleixner G, Kaiser K, Guggenberger G, Mann M, Schulze ED (2004) A proteomic fingerprint of dissolved organic carbon and of soil particles. Oecologia 142:335–343CrossRefGoogle Scholar
  67. Sharkey FH, Banat IM, Marchant R (2004) Detection and quantification of gene expression in environmental bacteriology. Appl Environ Microbiol 70:3795–3806CrossRefGoogle Scholar
  68. Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiß S, Sittka A, Stadler PF (2010) The primary transcriptome of the major human pathogenHelicobacter pylori. Nature, 464:250–255.  https://doi.org/10.1038/nature08756CrossRefGoogle Scholar
  69. Singleton I, Merringto G, Colvan S, Delahunty JS (2003) The potential of soil protein-based methods to indicate metal contamination. Appl Soil Ecol 654:1–8Google Scholar
  70. Sultan M, Amstislavskiy V, Risch T, Schuette M, Dökel S, Ralser M, Balzereit D, Lehrach H, Yaspo ML (2014) Influence of RNA extraction methods and library selection schemes on RNA-seq data. BMC Genomics 15(1):675.  https://doi.org/10.1186/1471-2164-15-675CrossRefGoogle Scholar
  71. Tanca A, Palomba A, Pisanu S, Deligios M, Fraumene C, Manghina V, Pagnozzi D, Addis MF, Uzzau S (2014) A straightforward and efficient analytical pipeline for metaproteome characterization. Microbiome 10:49CrossRefGoogle Scholar
  72. Tang Y, Underwood A, Gielbert A, Woodward MJ, Petrovska L (2014) Metaproteomics analysis reveals the adaptation process for the chicken gut microbiota. Appl Environ Microbiol 80:478–485CrossRefGoogle Scholar
  73. Tveit AT, Urich T, Svenning MM (2014) Metatranscriptomic analysis of arctic peat soil microbiota. Appl Environ Microbiol 80:5761–5772CrossRefGoogle Scholar
  74. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43CrossRefGoogle Scholar
  75. Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077CrossRefGoogle Scholar
  76. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu DY, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74CrossRefGoogle Scholar
  77. Verberkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M, Halfvarson J, Lefsrud MG, Apajalahti J, Tysk C, Hettich RL, Jansson JK (2009) Shotgun metaproteomics of the human distal gut microbiota. ISME J 3:179–189CrossRefGoogle Scholar
  78. Wang W, Vignani R, Scali M, Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782–2786CrossRefGoogle Scholar
  79. Wang L, Feng Z, Wang X, Wang X, Zhang X (2009) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138CrossRefGoogle Scholar
  80. Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1995) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50CrossRefGoogle Scholar
  81. Williams MA, Taylor EB (2010) Microbial protein in soil: influence of extraction method and C amendment on extraction and recovery. Microb Ecol 59:390–399CrossRefGoogle Scholar
  82. Wilmes P, Bond PL (2004) The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 6:911–920CrossRefGoogle Scholar
  83. Wiśniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362CrossRefGoogle Scholar
  84. Yates JR (2004) Mass spectral analysis in proteomics. Annu Rev Biophys Biomol Struct 33:297–316CrossRefGoogle Scholar
  85. Yates JR, Speicher S, Griffin PR, Hunkapiller T (1993) Peptide mass maps: a highly informative approach to protein identification. Anal Biochem 214:397–408CrossRefGoogle Scholar
  86. Yu K, Zhang T (2012) Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS One 7(5):e38183.  https://doi.org/10.1371/journal.pone.0038183CrossRefGoogle Scholar
  87. Yu Y, Suh MJ, Sikorski P, Kwon K, Nelson KE, Pieper R (2014) Urine sample preparation in 96-well filter plates for quantitative clinical proteomics. Anal Chem 86:5470–5477CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rama Kant Dubey
    • 1
  • Vishal Tripathi
    • 1
  • Ratna Prabha
    • 2
  • Rajan Chaurasia
    • 1
  • Dhananjaya Pratap Singh
    • 3
  • Ch. Srinivasa Rao
    • 4
  • Ali El-Keblawy
    • 5
  • Purushothaman Chirakkuzhyil Abhilash
    • 1
  1. 1.Institute of Environment & Sustainable DevelopmentBanaras Hindu UniversityVaranasiIndia
  2. 2.Chhattisgarh Swami Vivekananda Technical UniversityBhilaiIndia
  3. 3.ICAR-National Bureau of Agriculturally Important MicroorganismsMau Nath BhanjanIndia
  4. 4.National Academy of Agricultural Research ManagementHyderabadIndia
  5. 5.Department of Applied BiologyUniversity of SharjahSharjahUnited Arab Emirates

Personalised recommendations