Advertisement

Methods for Exploring Soil Microbial Diversity

  • Rama Kant Dubey
  • Vishal Tripathi
  • Ratna Prabha
  • Rajan Chaurasia
  • Dhananjaya Pratap Singh
  • Ch. Srinivasa Rao
  • Ali El-Keblawy
  • Purushothaman Chirakkuzhyil Abhilash
Chapter
Part of the SpringerBriefs in Environmental Science book series (BRIEFSENVIRONMENTAL)

Abstract

Belowground microbial processes are at the helm of terrestrial ecosystem functions, and the enormous diversity of soil microorganisms acts as a key player. Thus, understanding the community dynamics of microorganisms in the soil is essential to know their distribution, abundance, and structure. Further, it is also important to know how these communities are shaped in structure and function in response to changes in space and time. Various microbial diversity analysis methods—fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis, terminal restriction fragment length polymorphisms, and the automated version of ribosomal intergenic spacer analysis, RISA (ARISA)—have been developed to analyse the diversity of soil microorganisms based on their genetic structure. However, methods such as phospholipid and fatty acid analysis utilise the differences in lipid components of the microbial cell membrane to analyse their diversity. In the present chapter, we explore the conventional methods of soil microbial diversity analysis.

Keywords

Automated RISA (ribosomal intergenic spacer analysis (ARISA) Community dynamics Denaturing gradient gel electrophoresis (DGGE) Fluorescence in situ hybridization (FISH) Terminal restriction fragment length polymorphism (T-RFLP) 

References

  1. Abdeljailil NO-B, Renault D, Gerbore J, Vallance J, Rey P, Daami-Remadi M (2016) Evaluation of the effectiveness of tomato-associated rhizobacter applied singly or as three-strain consortium for biosuppression of Sclerotinia stem rot in tomato. J Microb Biochem Technol 8:4Google Scholar
  2. Amann R, Fuchs BM (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 6:339–348CrossRefGoogle Scholar
  3. Baraniya D, Puglisi E, Ceccherini MT, Pietramellara G, Giagnoni L, Arenella M, Renella G (2016) Protease encoding microbial communities and protease activity of the rhizosphere and bulk soils of two maize lines with different N uptake efficiency. Soil Biol Biochem 96:176–179CrossRefGoogle Scholar
  4. Becker JM, Parkin T, Nakatsu CH, Wilbur JD, Konopka A (2006) Bacterial activity, community structure and centimeter-scale spatial heterogeneity in contaminated soils. Microbiol Ecol 51:220–231CrossRefGoogle Scholar
  5. Ben-David EA, Holden PJ, Stone DJ, Harch BD, Foster LJ (2004) The use of phospholipid fatty acid analysis to measure impact of acid rock drainage on microbial communities in sediments. Microb Ecol 48:300–315CrossRefGoogle Scholar
  6. Ben-David EA, Zaady E, Sher Y, Nejidat A (2011) Assessment of the spatial distribution of soil microbial communities in patchy arid and semi-arid landscapes of the Negev Desert using combined PLFA and DGGE analyses. FEMS Microbiol Ecol 76:492–450CrossRefGoogle Scholar
  7. Bertani I, Abbruscato P, Piffanelli P, Subramoni S, Venturi V (2016) Rice bacterial endophytes: isolation of a collection, identification of beneficial strains and microbiome analysis.  https://doi.org/10.1111/1758-2229.12403CrossRefGoogle Scholar
  8. Bodrossy L, Sessitsch A (2004) Oligonucleotide microarrays in microbial diagnostics. Curr Opin Microbiol 7:245–254CrossRefGoogle Scholar
  9. Brown MV, Fuhrman JA (2005) Marine bacterial microdiversity as revealed by internal transcribed spacer analysis. Aquat Microb Ecol 41:15–23CrossRefGoogle Scholar
  10. Butterly CR, Phillips LA, Wiltshire JL, Franksc AE, Armstronga RD, Chene D, Melea PM, Tanga C (2016) Long-term effects of elevated CO2 on carbon and nitrogen functional capacity of microbial communities in three contrasting soils. Soil Biol Biochem 97:157–167CrossRefGoogle Scholar
  11. Calderon FJ, Nielsen ID, Acosta-Martinez V, Vigil MF, Lyon D (2016) Cover crop and irrigation effects on soil microbial communities and enzymes in semiarid agroecosystems of the central Great Plains of North America. Pedosphere 26:192–205CrossRefGoogle Scholar
  12. Caracciolo AB, Bottoni P, Grenni P (2010) Fluorescence in situ hybridization in soil and water ecosystems: a useful method for studying the effect of xenobiotics on bacterial community structure. Toxicol Environ Chem 92:567–579CrossRefGoogle Scholar
  13. Chen Y, Murrell JC (2010) When metagenomics meets stable-isotope probing: progress and perspectives. Trends Microbiol 18:157–163CrossRefGoogle Scholar
  14. Chen Y, Dumont MG, McNamara NP, Chamberlain PM, Bodrossy L, Pavese NS, Murrell JC (2008) Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses. Environ Microbiol 110:446–459CrossRefGoogle Scholar
  15. Collins G, Kavanagh S, Mchugh S, Connaughton S, Kearney A, Rice O, Carrigg C, Scully C, Bhreathnach N, Mahony T, Madden P, Enright AM, Flaherty V (2006) Accessing the black box of microbial diversity and ecophysiology: recent advances through polyphasic experiments. J Environ Sci Health A 41:897–922CrossRefGoogle Scholar
  16. Costa R, Götz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of different microbial guilds. FEMS Microbiol Ecol 56:236–249CrossRefGoogle Scholar
  17. de la Luz Mora M, Demaneta R, Acunaa JJ, Viscardia S, Jorqueraa M, Rengelb Z, Duran P (2017) Aluminium-tolerant bacteria improve the plant growth and phosphorus content in ryegrass grown in a volcanic soil amended with cattle dung manure. Appl Soil Ecol 115:19–26CrossRefGoogle Scholar
  18. Degefu Y, Somervuo P, Aittamaa M, Virtanen E, Valkonen JPT (2016) Evaluation of a diagnostic microarray for the detection of major bacterial pathogens of potato from tuber samples. Bull OEPP 46:103–111CrossRefGoogle Scholar
  19. DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363CrossRefGoogle Scholar
  20. Drenovsky RE, Steenwerth KL, Jackson LE, Scow KM (2010) Land use and climatic factors structure regional patterns in soil microbial communities. Glob Ecol Biogeogr 19:27–39CrossRefGoogle Scholar
  21. Drigo B, Van Veen JA, Kowalchuk GA (2009) Specific rhizosphere bacterial and fungal groups respond differently to elevated atmospheric CO2. ISME J 3:1204–1217CrossRefGoogle Scholar
  22. Dumont MG, Murrell JC (2005) Stable isotope probing-linking microbial identity to function. Nat Rev Microbiol 3:499–504CrossRefGoogle Scholar
  23. Fernandes JP, Marisa C, Almeida R, Andreotti F, Barros L, Almeida T, Mucha P (2017) Response of microbial communities colonizing salt marsh plants rhizosphere to copper oxide nanoparticles contamination and its implications for phytoremediation processes. Sci Total Environ 581:801–810CrossRefGoogle Scholar
  24. Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbialcommunity structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120CrossRefGoogle Scholar
  25. Fischer SG, Lerman LS (1979) Length-independent separation of DNA restriction fragments in two dimensional gel electrophoresis. Cell 16:191–200CrossRefGoogle Scholar
  26. Franzmann PD, Patterson BM, Power TR, Nichols PD, Davis GB (1996) Microbial biomass in a shallow, urban aquifer contaminated with aromatic hydrocarbons: analysis of phospholipid fatty acid content and composition. J Appl Bacteriol 80:617–625CrossRefGoogle Scholar
  27. Gebreil AS, Abraham W-R (2016) Diversity and activity of bacterial biofilm communities growing on hexachlorocyclohexane. Water Air Soil Pollut 227:295CrossRefGoogle Scholar
  28. Gruber-Dorninger C, Pester M, Kitzinger K, Savio DF, Loy A, Rattei T, Daims H (2015) Functionally relevant diversity of closely related Nitrospira in activated sludge. ISME J 9:643–655CrossRefGoogle Scholar
  29. Guangyin Z, Xueqin L, Takuro K, Gopalakrishnan K, Kaiqin X (2016) Promoted electromethanosynthesis in a two-chamber microbial electrolysis cells (MECs) containing a hybrid biocathode covered with graphite felt (GF). Chem Eng J 284:1146–1155.Google Scholar
  30. Hayashi K (1991) PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. PCR Methods Appl 1:34–38CrossRefGoogle Scholar
  31. Hewson I, Fuhrman JA (2004) Richness and diversity of bacterioplankton species along an estuarine gradient in Moreton Bay, Australia. Appl Environ Microbiol 70:3425–3433CrossRefGoogle Scholar
  32. Higuchi R, Dollinger G, Walsh PS, Griffith R (1992) Simultaneous amplification and detection of specific DNA sequences. Nat Biotechnol 10:413–417CrossRefGoogle Scholar
  33. Huyghe A, Francois P, Schrenzel J (2009) Characterization of microbial pathogens by DNA microarrays. Infect Genet Evol 9:987–995CrossRefGoogle Scholar
  34. Ishii K, Mußmann M, MacGregor BJ, Amann R (2004) An improved fluorescence in situ hybridization protocol for the identification of bacteria and archaea in marine sediments. FEMS Microbiol Ecol 50:203–212CrossRefGoogle Scholar
  35. Janczyk P, Pieper R, Smidt H, Wolfgang B (2010) Souffrant effect of alginate and inulin on intestinal microbial ecology of weanling pigs reared under different husbandry conditions. FEMS Microbiol Ecol 72:132–142CrossRefGoogle Scholar
  36. Jousset A, Lara E, Nikolausz M, Harms H, Chatzinotas A (2010) Application of the denaturing gradient gel electrophoresis (DGGE) technique as an efficient diagnostic tool for ciliate communities in soil. Sci Total Environ 408:1221–1225CrossRefGoogle Scholar
  37. Kaur A, Chaudhary A, Kaur A, Choudhary R, Kaushik R (2005) Phospholipid fatty acid – a bioindicator of environment monitoring assessment in soil ecosystem. Curr Sci 89:1103–1112Google Scholar
  38. Kohler J, Caravaca F, Azcon R, Diaz G, Roldan A (2016) Suitability of the microbial community composition and function in a semiarid mine soil for assessing phytomanagement practices based on mycorrhizal inoculation and amendment addition. J Environ Manag 169:236–246CrossRefGoogle Scholar
  39. Kovacs A, Yacoby K, Gophna U (2010a) A systematic assessment of automated ribosomal intergenic spacer analysis (ARISA) as a tool for estimating bacterial richness. Res. Microbiology 161:192–197Google Scholar
  40. Kovacs A et al (2010b) Genotype is a stronger determinant than sex of the mouse gut microbiota. Microbial Ecol 1:6Google Scholar
  41. Lee DH, Zo YG, Kim SJ (1996) Nonradioactive method to study genetic profiles of natural bacterial communities by PCR–single-strand conformation polymorphism. Appl Environ Microbiol 62:3112–3120Google Scholar
  42. Lee CK, Barbier BK, Bottos EM, McDonald IR, Cary SC (2012) The Inter-Valley Soil Comparative Survey: the ecology of Dry Valley edaphic microbial communities. ISME J 6:1046–1057CrossRefGoogle Scholar
  43. Lester ED, Satomi M, Ponce A (2007) Microflora of extreme arid Atacama Desert soils. Soil Biol Biochem 39:704–708CrossRefGoogle Scholar
  44. Li X, Sun J, Wang H, Li X, Wang J, Zhang H (2017) Changes in the soil microbial phospholipid fatty acid profile with depth in three soil types of paddy fields in China. Geoderma 290:69–74CrossRefGoogle Scholar
  45. Likar M, Stres B, Rusjan D, Potisek M, Regvar M (2017) Ecological and conventional viticulture gives rise to distinct fungal and bacterial microbial communities in vineyard soils. Appl Soil Ecol 113:86–95CrossRefGoogle Scholar
  46. Liu Y, Wang P, Crowley D, Liu X, Chen J, Li L, Zheng J, Zhang X, Zheng J, Pan G (2016a) Methanogenic abundance and changes in community structure along a rice soil chronosequence from east China. Eur J Soil Sci.  https://doi.org/10.1111/ejss.12348CrossRefGoogle Scholar
  47. Liu Y, Yang D, Zhang N, Chen L, Cui Z, Shen Q, Zhang R (2016b) Characterization of uncultured genome fragment from soil metagenomic library exposed rare mismatch of internal tetranucleotide frequency. Front Microbiol 7:2081Google Scholar
  48. Lukow T, Dunceld PF, Liesack W (2000) Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiol Ecol 32:241–247CrossRefGoogle Scholar
  49. Lupwayi NZ, Lamey FJ, Blackshaw RE, Kanashiro DA, Pearson DC (2017) Phospholipid fatty acid biomarkers show positive soil microbial community responses to conservation soil management of irrigated crop rotations. Soil Tillage Res 168:1–10CrossRefGoogle Scholar
  50. Malghani S, Reim A, Von Fischer J, Conrad R, Kuebler K, Trumbore SE (2016) Soil methanotroph abundance and community composition are not influenced by substrate availability in laboratory incubations. Soil Biol Biochem 101:184–194CrossRefGoogle Scholar
  51. Manefield M, Whiteley AS, Griffiths RI, Bailey MJ (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68:5367–5373CrossRefGoogle Scholar
  52. Markowicz A, Cycoń M, Piotrowska-Seget Z (2016) Microbial community structure and diversity in long-term hydrocarbon and heavy metal contaminated soils. Int J Environ Res 10:321–332Google Scholar
  53. Martin-Laurent F, Philippot L, Hallet S, Chaussod R, Germon JC, Soulas G, Catroux G (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67:2354–2359CrossRefGoogle Scholar
  54. McGrath KC, Mondav R, Sintrajaya R, Slattery B, Schmidt S, Schenk PM (2010) Development of an environmental functional gene microarray for soil microbial communities. Appl Environ Microbiol 76:7161–7170CrossRefGoogle Scholar
  55. Mijangos I, Becerril JM, Albizu I, Epelde L, Garbisu C (2009) Effects of glyphosate on rhizosphere soil microbial communities under two different plant compositions by cultivation-dependent and independent methodologies. Soil Biol Biochem 41:505–513CrossRefGoogle Scholar
  56. Morales SE, Cosart T, Holben WE (2010) Bacterial gene abundances as indicators of greenhouse gas emission in soils. ISME J 4:799–808CrossRefGoogle Scholar
  57. Mossa AW, Dickinson MJ, West HM, Young SD, Crout NM (2017) The response of soil microbial diversity and abundance to long-term application of biosolids. Environ Pollut 224:16–25CrossRefGoogle Scholar
  58. Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322CrossRefGoogle Scholar
  59. Neufeld JD, Dumont MG, Vohra J, Murrell JC (2007) Methodological considerations for the use of stable isotope probing in microbial ecology. Microb Ecol 53:435–442CrossRefGoogle Scholar
  60. Nunan N, Daniell TJ, Singh BK, Papert A, McNicol JW, Prosser JI (2005) Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques. Appl Environ Microbiol 71:6784–6792CrossRefGoogle Scholar
  61. Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5:787–797CrossRefGoogle Scholar
  62. Ogier JC, Son O, Gruss A, Tailliez P, Delacroix-Buchet A (2002) Identification of the bacterial microflora in dairy products by temporal temperature gradient gel electrophoresis. Appl Environ Microbiol 68:3691–3701CrossRefGoogle Scholar
  63. Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101CrossRefGoogle Scholar
  64. Props R, Kerckhof FM, Rubbens P, De Vrieze J, Sanabria EH, Waegeman W, Monsieurs P, Hammes F, Boon N (2017) Absolute quantification of microbial taxon abundances. ISME J 11:584–587CrossRefGoogle Scholar
  65. Quemeneur M, Garrido F, Billard P, Breeze D, Leyyal C, Jauzeind M, Joulianb C (2016) Community structure and functional arrA gene diversity associated with arsenic reduction and release in an industrially contaminated soil. Geomicrobiol J 33:839–849CrossRefGoogle Scholar
  66. Sanzani SM, Nicosia MGLD, Faedda R, Cacciola SO, Schena L (2014) Use of quantitative PCR detection methods to study biocontrol agents and phytopathogenic fungi and oomycetes in environmental samples. J Phytopathol 162:1–13CrossRefGoogle Scholar
  67. Schadt CW, Zhou J (2005) Advances in microarrays for soil microbial community analyses. In: Nannipieri P, Smalla K (eds) Soil biology: nucleic acids and proteins in soil. Springer-Verlag, New YorkGoogle Scholar
  68. Scheinert P, Kruse R, Ullmann U, Söller R, Krupp G (1996) Molecular differentiation of bacteria by PCR amplification of the 16S-23S rRNA spacer. J Microbiol Methods 26:103–117CrossRefGoogle Scholar
  69. Schimak MP, Kleiner M, Wetzel S, Liebeke M, Dubilier N, Fuchsa BM (2016) MiL-FISH: multilabeled oligonucleotides for fluorescence in situ hybridisation improve visualisation of bacterial cells. Appl Environ Microbiol 82:62–70CrossRefGoogle Scholar
  70. Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876Google Scholar
  71. Sekar R, Pernthaler A, Pernthaler J, Warnecke F, Posch T, Amann R (2003) An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl Environ Microbiol 69:2928–2935CrossRefGoogle Scholar
  72. Selvakumar N, Ding BC, Wilson SM (1997) Separation of DNA strands facilitates detection of point mutations by PCR-SSCP. BioTechniques 22:604–606CrossRefGoogle Scholar
  73. Smets W, Leff JW, Bradford MA, McCulley RL, Lebeer S, Fierer N (2016) A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing. Soil Biol Biochem 96:145–151CrossRefGoogle Scholar
  74. Smith CJ, Osborn AM (2009) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 67:6–20CrossRefGoogle Scholar
  75. Taylor JD, McKew BA, Kuhl A, McGenity TJ, Underwood GJC (2013) Microphytobenthic extracellular polymeric substances (EPS) in intertidal sediments fuelboth generalist and specialist EPS-degrading bacteria. Limnol Oceanogr 58:1463–1480CrossRefGoogle Scholar
  76. Teira E, Reinthaler T, Pernthaler A, Pernthaler J, Herndl GJ (2004) Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and archaea in the deep ocean. Appl Environ Microbiol 70:441–4414CrossRefGoogle Scholar
  77. Wang M, Liu P, Xiong W, Zhou Q, Wangxiao J, Zeng Z, Sun Y (2018) Fate of potential indicator antimicrobial resistance genes (ARGs) and bacterial community diversity in simulated manure-soil microcosms. Ecotoxicol Environ Saf 147:817–823CrossRefGoogle Scholar
  78. Widjojoatmodjo MN, Fluit AC, Verhoef J (1995) Molecular identification of bacteria by fluorescence-based PCR–single-strand conformation polymorphism analysis of the 16S rRNA gene. J Clin Microbiol 33:2601–2606Google Scholar
  79. Wilkinson SC, Anderson JM, Scardelis SP, Tisiafouli M, Taylor A, Wolters V (2002) PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress. Soil Biol Biochem 34:189–200CrossRefGoogle Scholar
  80. Wu C, Wang W, Wang K, Li X, Qiu W, Li W (2016) Phospholipids fatty acids analysis of microbial communities in sewage sludge composting with inorganic bulking agent. Desalin Water Treat 57:27181–27190CrossRefGoogle Scholar
  81. Xue K, Wu L, Deng Y, He Z, Nostrand JV, Robertson PG, Schmidt TM, Zhou J (2013) Functional gene differences in soil microbial communities from conventional, low-input, and organic farmlands. Appl Environ Microbiol 79:1284–1292CrossRefGoogle Scholar
  82. Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: a review. Biol Fertil Soils 29:111–129CrossRefGoogle Scholar
  83. Zhou JZ, Thompson DK (2002) Challenges in applying microarrays to environmental studies. Curr Opin Biotechnol 13:204–207CrossRefGoogle Scholar
  84. Zoppini A, Ademollo N, Amalfitano S, Capri S, Casella P, Fazi S, Marxen J, Patrolecco L (2016) Microbial responses to polycyclic aromatic hydrocarbon contamination in temporary river sediments: experimental insights. Sci Total Environ 541:1364–1371CrossRefGoogle Scholar
  85. Zornoza R, Acosta JA, Faz A, Baath E (2016) Microbial growth and community structure in acid mine soils after addition of different amendments for soil reclamation. Geoderma 272:64–72CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rama Kant Dubey
    • 1
  • Vishal Tripathi
    • 1
  • Ratna Prabha
    • 2
  • Rajan Chaurasia
    • 1
  • Dhananjaya Pratap Singh
    • 3
  • Ch. Srinivasa Rao
    • 4
  • Ali El-Keblawy
    • 5
  • Purushothaman Chirakkuzhyil Abhilash
    • 1
  1. 1.Institute of Environment & Sustainable DevelopmentBanaras Hindu UniversityVaranasiIndia
  2. 2.Chhattisgarh Swami Vivekananda Technical UniversityBhilaiIndia
  3. 3.ICAR-National Bureau of Agriculturally Important MicroorganismsMau Nath BhanjanIndia
  4. 4.National Academy of Agricultural Research ManagementHyderabadIndia
  5. 5.Department of Applied BiologyUniversity of SharjahSharjahUnited Arab Emirates

Personalised recommendations