Advertisement

Application of Novel Polymeric Materials Supporting 3D Printing Technology in the Development of Anatomical Models and Regenerative Medicine

  • Andrzej Szymon SwinarewEmail author
  • Jarosław Paluch
  • Klaudia Kubik
  • Beata Dorzak
  • Anna Kwaśniewska
  • Tomasz Flak
  • Jadwiga Gabor
  • Marta Łężniak
  • Hubert Okła
  • Grzegorz Bajor
  • Damian Kusz
  • Robert Wilk
  • Hanna Sikora
  • Krzysztof Aniołek
  • Adrian Barylski
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 925)

Abstract

The article is focused on the new polymer material which could be used for hip endoprosthesis. Nowadays the most common materials which are used are metal alloys, ceramics and polyethylene. The aim of this study was to present the properties of modified polycarbonate (PC) with the particular consideration of tribological and mechanical properties and proving that this material could be successfully used beside existing and currently chosen materials. For mentioned materials conducted a few tests. Among of them were hardness measurements, static stretching tests and study of abrasive wear resistance. Obtained results allowed to conclude about using the material as not only a part of hip endoprosthesis but a whole implant. The novel obtained polymeric materials based on the PC modified with nanosilica presents instead of bacteriostatic properties improved resistance to volumetric wear. The nanoparticles of silica do not negative affect on the friction coefficient. The obtained results clearly presents that the material possess better coefficient of friction combined with lower volumetric wear.

Keywords

Regenerative medicine Polymeric materials 3D printing Biomaterials 

References

  1. 1.
    Affatato, S.: The history of biomaterials used in total hip arthroplasty (THA). In: Advances in Biomaterials and Their Tribological interactions, pp. 19–36 (2014)Google Scholar
  2. 2.
    Niemczewska-Wójcik, M.: Wear mechanisms and surface topography of artificial hip joint components at the subsequent stages of tribological tests. Meas. J. Int. Meas. Confederation 107, 89–98 (2017)CrossRefGoogle Scholar
  3. 3.
    Houcke, J.V., Khanduja, V., Pattyn, C., Audenaert, E.: The history of biomechanics in total hip arthroplasty. Indian J. Orthop. 51(4), 421–433 (2017)CrossRefGoogle Scholar
  4. 4.
    Hodge, W.A., Fijan, R.S., Carlson, K.L., Burgess, R.G., Harris, W.H., Mann, R.W.: Contact pressures in the human hip joint measured in vivo. Proc. Nat. Acad. Sci. U.S.A. 83(9), 2879–2883 (1986)CrossRefGoogle Scholar
  5. 5.
    Askari, E., Flores, P., Dabirrahmani, D., Appleyard, R.: A review of squeaking in ceramic total hip prostheses. Tribol. Int. 93, 239–256 (2015)CrossRefGoogle Scholar
  6. 6.
    Alvarado, J., Maldonado, R., Marxuach, J., Otero, R.: Biomechanics of hip and knee prostheses. Engineering 1–20 (2003)Google Scholar
  7. 7.
    Si, H.B., Zeng, Y., Cao, F., Pei, F.X., Shen, B.: Is a ceramic-on-ceramic bearing really superior to ceramic-on-polyethylene for primary total hip arthroplasty? A systematic review and meta-analysis of randomised controlled trials. Hip Int. 25(3), 191–198 (2015)CrossRefGoogle Scholar
  8. 8.
    The Polish Committee for Standardization: Pomiar twardości sposobem Vickersa. Część 1: Metoda badań (PN-EN ISO 6507-1:2007) (2007)Google Scholar
  9. 9.
    The Polish Committee for Standardization: Tworzywa sztuczne. Oznaczanie właściwości mechanicznych przy statycznym rozciąganiu. Część 1: Zasady ogólne. (PN-EN ISO 527-1:2012) (2012)Google Scholar
  10. 10.
    The Polish Committee for Standardization: Tworzywa sztuczne. Oznaczanie właściwości mechanicznych przy statycznym rozciąganiu. Część 2: Warunki badań tworzyw sztucznych przeznaczonych do prasowania, wtrysku i wytłaczania (PN-EN ISO 527-2:2012) (2012)Google Scholar
  11. 11.
    Covestro (Bayer). Makroln 2600 PC Datasheet. http://en.tecves.com/materials/148/makrolon-2600. Accessed 2 Feb 2018
  12. 12.
    Madej, T., Ryniewicz, A.M.: Modelling and strength simulations in a hip joint equipped with an overlay prosthesis as a diagnostic procedure before the hip. Tribologia 2, 115–128 (2013)Google Scholar
  13. 13.
  14. 14.
    Swinarew, A., Flak, T., Okła, H., Kubik, K., Rozwadowska, B., Gabor, J., Łężniak, M.: Organiczny materiał bakteriostatyczny, nr zgłoszenia: P. 420670. (in Polish)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrzej Szymon Swinarew
    • 1
    Email author
  • Jarosław Paluch
    • 2
  • Klaudia Kubik
    • 1
  • Beata Dorzak
    • 3
  • Anna Kwaśniewska
    • 4
  • Tomasz Flak
    • 1
  • Jadwiga Gabor
    • 1
  • Marta Łężniak
    • 1
  • Hubert Okła
    • 1
  • Grzegorz Bajor
    • 3
  • Damian Kusz
    • 5
  • Robert Wilk
    • 5
  • Hanna Sikora
    • 5
  • Krzysztof Aniołek
    • 1
  • Adrian Barylski
    • 1
  1. 1.Faculty of Computer Science and Materials Science, Institute of Materials ScienceUniversity of Silesia in KatowiceKatowicePoland
  2. 2.Department of Laryngology, School of Medicine in KatowiceMedical University of SilesiaKatowicePoland
  3. 3.Department of Anatomy, School of Medicine in KatowiceMedical University of Silesia in KatowiceKatowicePoland
  4. 4.Department of RadiologyMedical University of Silesia in Katowice, Hospital SPSK MKatowicePoland
  5. 5.Department of Orthopedics and Traumatology, School of Medicine in KatowiceMedical University of Silesia in KatowiceKatowicePoland

Personalised recommendations