Electrochemical Corrosion of Magnesium Alloy AZ31 in NaCl Solutions After Rolling

  • Joanna PrzondzionoEmail author
  • Eugeniusz HadasikEmail author
  • Witold WalkeEmail author
  • Janusz SzalaEmail author
  • Jakub WieczorekEmail author
  • Marcin Basiaga
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 925)


The purpose of this study was to evaluate the electrochemical corrosion resistance of magnesium alloy AZ31 after rolling. Corrosion tests were conducted in NaCl solutions containing various concentrations of chloride ions (0.01–2 M NaCl). Potentiodynamic tests were conducted to obtain anodic polarisation curves. Immersion tests were conducted over periods of 1–5 days. The microstructure of AZ31 was examined by scanning electron microscopy (SEM) after the immersion tests. Electrochemical impedance spectroscopy (EIS) was applied to evaluate the electrochemical phenomena occurring at the surface of the tested alloy. Geometrical features of the AZ31 alloy surface were also measured after the corrosion tests. The results of all of the tests carried out demonstrate a clear deterioration in the corrosion properties of magnesium alloy AZ31 with the increase in the molar concentration of the NaCl solution. Irrespective of the molar concentration of the NaCl solution, pitting corrosion on the surface of the tested alloy was observed.


Magnesium Alloy AZ31 Rolling Electrochemical corrosion SEM EIS 



The financial support of Structural Funds in the Operational Programme Innovative Economy (IE OP) financed by the European Regional Development Fund—Project “Modern material technologies in aerospace industry”, No. POIG.0101.02-00-015/08 is gratefully acknowledged.


  1. 1.
    Hadasik, E.: Tests of metal plasticity. Monograph, Printing House of the Silesian University of Technology, Gliwice (2008, in Polish)Google Scholar
  2. 2.
    Kawalla, R.: Magnesium and magnesium alloys. Monograph: Metal processing. Plasticity and structure, Printing House of the Silesian University of Technology, Gliwice (2006, in Polish)Google Scholar
  3. 3.
    Kiełbus, A., Kuc, D., Rzychoń, T.: Magnesium alloys’ microstructure, properties and application. Monograph. Modern metallic materials - presence and future, Department of Materials Engineering and Metallurgy, Katowice (2009, in Polish)Google Scholar
  4. 4.
    Brooks, C.R.: Heat treatment, structure and properties of nonferrous alloys. ASM Internationale, Metals Park, Ohio (1984)Google Scholar
  5. 5.
    Xu, Z., Tang, G., Tian, S., Ding, F., Tian, H.: Research of electroplastic rolling of AZ31 Mg alloy strip. J. Mater. Process. Technol. 182(1–3), 128–133 (2007)CrossRefGoogle Scholar
  6. 6.
    Zhang, H., Yan, Q., Li, L.: Microstructures and tensile properties of AZ31 magnesium alloy by continuous extrusion forming process. Mater. Sci. Eng. A 486(1–2), 295–299 (2008)CrossRefGoogle Scholar
  7. 7.
    Qudong, W., Yinhonga, W., Chinob, Y., Mabuch, M.: High strain rate superplasticity of rolled A291 magnesium alloy. Rare Metals 27(1), 46–49 (2008)CrossRefGoogle Scholar
  8. 8.
    Kawalla, R., Lehmann, G., Ullmann, M., Voght, H.P.: Magnesium semi-finished products for vehicle construction. Arch. Civil Mech. Eng. 8(2), 93–101 (2008)CrossRefGoogle Scholar
  9. 9.
    Xu-yue, Y., Miura, H., Sakai, T.: Recrystallization behaviour of fine-grained magnesium alloy after hot deformation. Trans. Nonferrous Met. Soc. China 17(6), 1139–1142 (2007)CrossRefGoogle Scholar
  10. 10.
    Čížek, L., Greger, M., Dobrzański, L.A., Juřička, I., Kocich, R., Pawlica, L.: Structure and properties of alloys of the Mg-Al-Zn system. J. Achievements Mater. Manuf. Eng. 32(2), 179–187 (2009)Google Scholar
  11. 11.
    Xing, J., Yang, X., Miura, H., Sakai, T.: Superplasticity of magnesium alloy AZ31 processed by severe plastic deformation. Mater Trans. 48(6), 1406–1411 (2007)CrossRefGoogle Scholar
  12. 12.
    Bryła, K., Dutkiewicz, J., Lityńska-Dobrzyńska, L., Rokhlin, L.L., Kurtyka, P.: Influence of number of ECAP passes on microstructure and mechanical properties of AZ31 magnesium alloy. Arch. Metall. Mater. 57(3), 711–717 (2012)CrossRefGoogle Scholar
  13. 13.
    Gontarz, A., Dziubińska, A., Okoń, Ł.: Determination of friction coefficients at elevated temperatures for some Al, Mg and Ti alloy. Arch. Metall. Mater. 56(2), 379–384 (2011)CrossRefGoogle Scholar
  14. 14.
    Walke, W., Hadasik, E., Przondziono, J., Kuc, D., Bednarczyk, I., Niewielski, G.: Plasticity and corrosion resistance of magnesium alloy WE43. Arch. Mater. Sci. Eng. 51(1), 16–24 (2011)Google Scholar
  15. 15.
    Tomczak, J., Pater, Z., Bulzak, T.: Thermo-mechanical analysis of a lever preform forming from magnesium alloy AZ31. Arch. Metall. Mater. 57(4), 1211–1218 (2012)CrossRefGoogle Scholar
  16. 16.
    Pater, Z., Tomczak, J.: Experimental tests for cross wedge rolling of forgings made from non-ferrous metal alloys. Arch. Metall. Mater. 57(4), 919–928 (2012)CrossRefGoogle Scholar
  17. 17.
    Gontarz, A., Pater, Z., Drozdowski, K.: Hammer forging process of lever drop forging from AZ31 magnesium alloy. Metalurgija 52(3), 359–362 (2013)Google Scholar
  18. 18.
    Cyganek, Z., Tkocz, M.: The effect of AZ31 alloy flow stress description on the accuracy of forward extrusion FE simulation results. Arch. Metall. Mater. 57(1), 199–204 (2012)CrossRefGoogle Scholar
  19. 19.
    Maker, G.L., Kruger, J.: Corrosion of magnesium. Int. Mater. Rev. 38(3), 138–153 (1993)CrossRefGoogle Scholar
  20. 20.
    Song, G., Trens, A., Wu, X., Zhang, B.: Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride. Corros. Sci. 40(10), 1769–1791 (1998)CrossRefGoogle Scholar
  21. 21.
    Amira, S., Dubé, D., Tremblay, R., Ghali, E.: Influence of the microstructure on the corrosion behavior of AXJ530 magnesium alloy in 3.5% NaCl solution. Mater. Charact. 59(10), 1508–1517 (2008)Google Scholar
  22. 22.
    Dobrzańska-Danikiewicz, A.D., Tański, T., Domagała-Dubiel, J.: Unique properties, development perspectives and expected applications of laser treated casting magnesium alloys. Arch. Civil Mech. Eng. 12(3), 318–326 (2012)CrossRefGoogle Scholar
  23. 23.
    Przondziono, J., Walke, W., Szala, J., Hadasik, E., Wieczorek, J.: Evaluation of corrosion resistance of casting magnesium alloy AZ31 in NaCl solutions. In: IOP Conference Series: Materials Science and Engineering, vol. 22, no. 012-017, pp. 1–12 (2011)CrossRefGoogle Scholar
  24. 24.
    Rzychoń, T., Michalska, J., Kiełbus, A.: Effect of heat treatment on corrosion resistance of WE54 alloy. J. Achievements Mater. Manuf. Eng. 20(1–2), 191–194 (2007)Google Scholar
  25. 25.
    Przondziono, J., Walke, W., Hadasik, E., Jasiñski, B.: Electrochemical corrosion of magnesium alloy AZ31 in NaCl solutions. Acta Metallurgica Slovaca 16(4), 254–260 (2010)Google Scholar
  26. 26.
    Ambat, R., Aung, N., Zhou, W.: Evaluation of microstructural efects on corrosion behaviour of AZ91D magnesium alloy. Corros. Sci. 42(8), 1433–1455 (2000)CrossRefGoogle Scholar
  27. 27.
    Altun, H., Sen, S.: Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behaviour of AZ63 magnesium alloy. Mater. Des. 25(7), 637–643 (2004)CrossRefGoogle Scholar
  28. 28.
    Anik, M., Celikten, G.: Analysis of the electrochemical reaction behavior of alloy AZ91 by EIS technique in H3PO4/KOH buffered K2SO4 solutions. Corros. Sci. 49(4), 1878–1894 (2007)CrossRefGoogle Scholar
  29. 29.
    Przondziono, J., Walke, W., Hadasik, E.: Galvanic corrosion test of magnesium alloys after plastic forming. Light Metals Their alloys II Solid State Phenomena 191, 169–176 (2012)CrossRefGoogle Scholar
  30. 30.
    Przondziono, J., Walke, W., Hadasik, E., Szala, J., Wieczorek, J.: Corrosion resistance tests of magnesium alloy WE43 after extrusion. Metalurgija 52(2), 242–246 (2013)Google Scholar
  31. 31.
    Basiaga, M., Paszenda, Z., Walke, W.: Study of electrochemical properties of carbon coatings used in medical devices. Electr. Rev. 87(12B), 12–15 (2012)Google Scholar
  32. 32.
    Walke, W., Paszenda, Z., Pustelny, T., Opilski, Z., Drewniak, S., Kocielniak-Ziemniak, M., Basiaga, M.: Evaluation of physicochemical properties of \(SiO_{2}\) coated stainless steel after sterilization. Mater. Sci. Eng. C - Mater. Biol. Appl. 63, 155–163 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Materials Engineering and MetallurgySilesian University of TechnologyKatowicePoland
  2. 2.Faculty of Biomedical EngineeringSilesian University of TechnologyZabrzePoland

Personalised recommendations