Study of Operating Properties of Surgical Tools

  • Anita KajzerEmail author
  • Monika Lewczuk
  • Marcin Kaczmarek
  • Wojciech Kajzer
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 925)


The aim of the work was to assess the operational damage of surgical instruments. As part of the research, the surface, structure, mechanical properties and corrosion resistance of the bone gouge forceps and haemorrhoidal forceps withdrawn from use after the intended period of operation were assessed. The test results showed numerous scratches, dents, cracks and chipping caused by operation and storage on the entire surface of the tested tools, which had a direct impact on the increase of the surface roughness. For the bone gouge forceps, non-metallic inclusions were classified as type D: thin globular oxides with an approximate thickness of up to 8 \(\upmu \)m and the pattern number of 1.5, and for haemorrhoidal forceps as type D: thick globular oxides with a thickness of 12 \(\upmu \)m and the pattern number of 1.5. Microscopic metallographic examinations showed in the working part of the analyzed tools (both the bone gouge forceps and haemorrhoidal forceps) the structure of low-tempered martensite with visible retained austenite, whereas in the gripping part, the martensite structure in the annealed state. The obtained results of the hardness test showed that in the case of the working part of the bone gouge forceps, the gripping and the working part of the hemorrhoid forceps, the values met the recommendations given in the standards. The test of droplet corrosion resistance showed that all surgical instruments selected for the test are corrosion resistant.


Surgical tools Structure Mechanical properties Corrosion resistance 



The work has been financed from research project no \(BK-210/RIB2/2018 07/020/BK\_18/0028\).


  1. 1.
    Kajzer, A., Kajzer, W., Gołombek, K., Knol, M., Dzielicki, J., Walke, W.: Corrosion resistance, eis and wettability of the implants made of 316 LVM steel used in chest deformation treatment. Arch. Metall. Mater. 61(2a), 767–770 (2016)CrossRefGoogle Scholar
  2. 2.
    Szewczenko, J., Marciniak, J., Kajzer, W., Kajzer, A.: Evaluation of corrosion resistance of titanium alloys used for medical implants. Arch. Metall. Mater. 61(2), 695–699 (2016)CrossRefGoogle Scholar
  3. 3.
    Bączkowski, B., Ziębowicz, A., Ziębowicz, B., Wojtyńska, E.: Laboratory evaluation of the fit of anti-rotational elements at the hybrid implant abutment used in prosthetic dentistry. In: Innovations in Biomedical Engineering. Advances in Intelligent System and Computing, vol. 526, pp. 11–16. Springer, Heidelberg (2017)Google Scholar
  4. 4.
    Mondrzejewska, A., Ziębowicz, A., Bączkowski, B.: Periimplantitis as the cause of separation the prosthetic bridge based on implants. In: Innovations in Biomedical Engineering. Advances in Intelligent System and Computing, vol. 526, pp. 57–66. Springer, Heidelberg (2017)Google Scholar
  5. 5.
    Kajzer, W., Kajzer, A., Grygiel-Pradelok, M., Ziebowicz, A., Ziebowicz, B.: Evaluation of physicochemical properties of \({\rm TiO}_{2}\) layer on AISI 316LVM steel intended for urology. In: Information Technologies in Medicine. Advances in Intelligent Systems and Computing, vol. 472, pp. 385–398 (2016)Google Scholar
  6. 6.
    Kaczmarek, M., Kurtyka, P.: Corrosion resistance of surface treated NiTi alloy tested in artificial plasma. In: Innovations in Biomedical Engineering. Advances in Intelligent System and Computing, vol. 526, pp. 17–24. Springer, Heidelberg (2017)Google Scholar
  7. 7.
    Basiaga, M., Paszenda, Z., Walke, W.: Study of electrochemical properties of carbon coatings used in medical devices. Przegląd Elektrotechniczny 87(12B), 12–15 (2011)Google Scholar
  8. 8.
    Basiaga, M., Paszenda, Z., Szewczenko, J.: Biomechanical behaviour of surgical drills in simulated conditions of drilling in a bone. In: Information Technologies in Biomedicine. Advances in Intelligent and Soft Computing, vol. 69, pp. 473–481 (2010)Google Scholar
  9. 9.
    Hendzel, M.: Narzędzia i urządzenia medyczne. Wydawnictwo Szkolne i Pedagogiczne, Warszawa (1982). (In Polish)Google Scholar
  10. 10.
    Paszenda, Z., Tyrlik-Held, J.: Instrumentarium chirurgiczne. Wydawnictwo Politechniki Śląskiej, Gliwice (2003)Google Scholar
  11. 11.
    Katalog firmy Chifa – ChirurgiaGoogle Scholar
  12. 12.
    BN-74/5909-02: Narzędzia medyczne i weterynaryjne. Pakowanie, przechowywanie i transport. Wspólne wymagania i badaniaGoogle Scholar
  13. 13.
  14. 14.
    PN-EN ISO 4284: Specyfikacje geometrii wyrobów. Struktura geometryczna powierzchni: metoda profilowa. Terminy, definicje i parametry struktury geometrycznej powierzchni. (In Polish)Google Scholar
  15. 15.
    PN-87 M-04251: Struktura geometryczna powierzchni. Chropowatość powierzchni. Wartości liczbowe parametrów. (In Polish)Google Scholar
  16. 16.
    PN-87/Z-5402: Narzędzia medyczne. Rękojeści i brzeszczoty skalpeli z wymiennymi brzeszczotami. Wymiary przyłączenioweGoogle Scholar
  17. 17.
    PN-88/Z-54123: Narzędzia medyczne. Nożyczki chirurgiczne. Wspólne wymagania i badania. (In Polish)Google Scholar
  18. 18.
    ISO 4967: Skala wzorca ASTMGoogle Scholar
  19. 19.
    PN-EN ISO 643: Stal. Mikrograficzne określanie wielkości ziarna. (In Polish)Google Scholar
  20. 20.
    PN-88 Z-54030: Narzędzia medyczne. Narzędzia zaciskające z zapadkami. Ogólne wymagania i metody badańGoogle Scholar
  21. 21.
    PN-74/Z-54122: Narzędzia medyczne. Odgryzacze kostne. Wspólne wymagania i badaniaGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anita Kajzer
    • 1
    Email author
  • Monika Lewczuk
    • 1
  • Marcin Kaczmarek
    • 1
  • Wojciech Kajzer
    • 1
  1. 1.Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical EngineeringSilesian University of TechnologyZabrzePoland

Personalised recommendations