Protein Encapsulation in Polymeric Microneedles by Photolithography

  • Jaspreet Singh Kochhar
  • Justin J. Y. Tan
  • Yee Chin Kwang
  • Lifeng Kang


Transdermal delivery of protein drugs is a useful alternative to oral and parenteral routes because it circumvents the problems associated with these conventional modes of drug delivery. One such strategy to overcome the natural skin barrier involves encapsulating them inside a polymeric core, offering the advantage of a higher drug loading in one convenient formulation rather than having multiple ones. However, previously reported fabrication approaches required high temperatures, vacuum, or prolonged exposure to ultraviolet light which may be potentially harmful to protein drugs. In this chapter, we described a novel photolithography-based method utilizing low exposure to ultraviolet light developed in the previous chapter to encapsulate bovine serum albumin (BSA) – a model protein for our study. As a proof of concept, this simple photolithographic technique has shown uniform drug distribution across the microneedle arrays, maintained protein stability and shown greater permeation of BSA through the skin as compared to passive diffusion, thereby demonstrating its potential to be used to encapsulate other protein drugs in the future.


Protein encapsulation Photolithography Bovine serum albumin BSA 


  1. 1.
    Daugherty AL et al (2003) Emerging technologies that overcome biological barriers for therapeutic protein delivery. Expert Opin Biol Ther 3:1071–1081CrossRefGoogle Scholar
  2. 2.
    Jiang J et al (2007) Coated microneedles for drug delivery to the eye. Invest Ophthalmol Vis Sci 48:4038–4043CrossRefGoogle Scholar
  3. 3.
    Koutsonanos DG et al (2009) Transdermal influenza immunization with vaccine-coated microneedle arrays. PLoS One 4:e4773CrossRefGoogle Scholar
  4. 4.
    Kumar A et al (2011) Permeation of antigen protein-conjugated nanoparticles and live bacteria through microneedle-treated mouse skin. Int J Nanomedicine 6:1253–1264PubMedPubMedCentralGoogle Scholar
  5. 5.
    Baek C et al (2011) Local transdermal delivery of phenylephrine to the anal sphincter muscle using microneedles. J Control Release 154:138–147CrossRefGoogle Scholar
  6. 6.
    Sullivan SP et al (2010) Dissolving polymer microneedle patches for influenza vaccination. Nat Med 16:915–920CrossRefGoogle Scholar
  7. 7.
    Panyam J et al (2003) Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles. J Control Release 92:173–187CrossRefGoogle Scholar
  8. 8.
    Xie J et al (2007) Encapsulation of proteins in biodegradable polymeric microparticles using electrospray in the Taylor cone-jet mode. Biotechnol Bioeng 97:1278–1290CrossRefGoogle Scholar
  9. 9.
    Angelova A et al (2011) Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery. Acc Chem Res 44:147–156CrossRefGoogle Scholar
  10. 10.
    Pan J et al (2011) Microfabricated particulate drug-delivery systems. Biotechnol J 6:1477–1487CrossRefGoogle Scholar
  11. 11.
    Angelova A et al (2003) Lipid cubic phases as stable nanochannel network structures for protein biochip development: X-ray diffraction study. Langmuir 19:6928–6935CrossRefGoogle Scholar
  12. 12.
    Donnelly RF et al (2009) Processing difficulties and instability of carbohydrate microneedle arrays. Drug Dev Ind Pharm 35:1242–1254CrossRefGoogle Scholar
  13. 13.
    Lee JW et al (2008) Dissolving microneedles for transdermal drug delivery. Biomaterials 29:2113–2124CrossRefGoogle Scholar
  14. 14.
    Yang S et al (2012) A scalable fabrication process of polymer microneedles. Int J Nanomedicine 7:1415–1422PubMedPubMedCentralGoogle Scholar
  15. 15.
    Kochhar JS et al (2013) A simple method of microneedle array fabrication for transdermal drug delivery. Drug Dev Ind Pharm 39:299–309CrossRefGoogle Scholar
  16. 16.
    Zhuang W et al (2012) Ilaprazole metabolites, ilaprazole sulfone and ilaprazole sulfide decreased the affinity of ilaprazole to bovine serum albumin. J Lumin 132:350–356CrossRefGoogle Scholar
  17. 17.
    Tan L et al (2004) Fluorescence quenching of bovine serum albumin in reversed micelles by CdS nanoparticles. Anal Sci 20:441–444CrossRefGoogle Scholar
  18. 18.
    Rozman B et al (2009) Temperature-sensitive microemulsion gel: an effective topical delivery system for simultaneous delivery of vitamins C and E. AAPS PharmSciTech 10:54–61CrossRefGoogle Scholar
  19. 19.
    Prausnitz MR et al (2008) Transdermal drug delivery. Nat Biotechnol 26:1261–1268CrossRefGoogle Scholar
  20. 20.
    Sullivan SP et al (2008) Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv Mater 20:933–938CrossRefGoogle Scholar
  21. 21.
    Garland MJ et al (2012) Dissolving polymeric microneedle arrays for electrically assisted transdermal drug delivery. J Control Release 159:52–59CrossRefGoogle Scholar
  22. 22.
    Gonzalez-Gonzalez E et al (2010) Silencing of reporter gene expression in skin using siRNAs and expression of plasmid DNA delivered by a soluble protrusion array device (PAD). Mol Ther 18:1667–1674CrossRefGoogle Scholar
  23. 23.
    Titus JA et al (1982) Texas Red, a hydrophilic, red-emitting fluorophore for use with fluorescein in dual parameter flow microfluorometric and fluorescence microscopic studies. J Immunol Methods 50:193–204CrossRefGoogle Scholar
  24. 24.
    Kerwin BA et al (2007) Protect from light: photodegradation and protein biologics. J Pharm Sci 96:1468–1479CrossRefGoogle Scholar
  25. 25.
    He Y et al (2002) Rapid determination of protein molecular weight by the Ferguson method and multiplexed capillary electrophoresis. J Proteome Res 1:273–277CrossRefGoogle Scholar
  26. 26.
    Weber K et al (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244:4406–4412PubMedGoogle Scholar
  27. 27.
    Çetin M et al (2007) Preparation and characterization of BSA-loaded alginate microspheres. Fabad J Pharm Sci 32:103–107Google Scholar
  28. 28.
    Murayama K et al (2004) Heat-induced secondary structure and conformation change of bovine serum albumin investigated by Fourier transform infrared spectroscopy. Biochemistry 43:11526–11532CrossRefGoogle Scholar
  29. 29.
    Husband FA et al (2001) Adsorbed protein secondary and tertiary structures by circular dichroism and infrared spectroscopy with refractive index matched emulsions. J Agric Food Chem 49:859–866CrossRefGoogle Scholar
  30. 30.
    Hu X et al (2010) Fluorescence studies of interaction between flavonol p-coumaroylglucoside tiliroside and bovine serum albumin. Spectrochim Acta A Mol Biomol Spectrosc 77:548–553CrossRefGoogle Scholar
  31. 31.
    Price NC (2000) Conformational issues in the characterization of proteins. Biotechnol Appl Biochem 31(Pt 1):29–40CrossRefGoogle Scholar
  32. 32.
    Lakowicz JR (2006) Protein Fluorescence. In: Lakowicz JR (ed) Principles of fluorescence spectroscopy. Springer, New York, pp 529–575Google Scholar
  33. 33.
    Park JH et al (2006) Polymer microneedles for controlled-release drug delivery. Pharm Res 23:1008–1019CrossRefGoogle Scholar
  34. 34.
    Harvey AJ et al (2011) Microneedle-based intradermal delivery enables rapid lymphatic uptake and distribution of protein drugs. Pharm Res 28:107–116CrossRefGoogle Scholar
  35. 35.
    Xie Y et al (2005) Controlled transdermal delivery of model drug compounds by MEMS microneedle array. Nanomedicine 1:184–190CrossRefGoogle Scholar
  36. 36.
    Aitken A et al (2002) Protein determination by UV absorption. In: Walker JM (ed) The protein protocols handbook, chap. 1. Humana Press Inc., New Jersey, pp 3–6Google Scholar
  37. 37.
    Kang L et al (2007) Formulation development of transdermal dosage forms: quantitative structure-activity relationship model for predicting activities of terpenes that enhance drug penetration through human skin. J Control Release 120:211–219CrossRefGoogle Scholar
  38. 38.
    Mangalathillam S et al (2011) Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. NanoscaleGoogle Scholar
  39. 39.
    Maupas C et al (2011) Surfactant dependent toxicity of lipid nanocapsules in HaCaT cells. Int J Pharm 411:136–141CrossRefGoogle Scholar
  40. 40.
    Goncharuk V et al (2010) The use of HEK 293 human cells for assessing water toxicity before and after purification of ions of copper and zinc. J Water Chem Technol 32:50–55CrossRefGoogle Scholar
  41. 41.
    Kochhar JS, Zou S, Chan SY, Kang L (2012) Protein encapsulation in polymeric microneedles by photolithography. Int J Nanomedicine 7:3143–3154Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jaspreet Singh Kochhar
    • 1
  • Justin J. Y. Tan
    • 2
  • Yee Chin Kwang
    • 3
  • Lifeng Kang
    • 3
  1. 1.Procter & GambleSingaporeSingapore
  2. 2.Department of PharmacyNational University of SingaporeSingaporeSingapore
  3. 3.School of PharmacyUniversity of SydneySydneyAustralia

Personalised recommendations