Introduction & Literature Review

  • Jaspreet Singh Kochhar
  • Justin J. Y. Tan
  • Yee Chin Kwang
  • Lifeng Kang


The skin, commonly considered to be the largest organ of the human body, has been used as a drug delivery route for numerous dermal and transdermal drugs. Being a structural barrier protecting the underlying tissues, the skin poses many challenges to be used as an amenable passage for drugs to permeate. In this chapter, we would describe the current advantages and disadvantages of transdermal drug delivery, making comparisons with different drug delivery routes, elucidate the mechanisms of passive and active transdermal drug delivery and deliberating different formulations which can be delivered via the transdermal route. We would investigate the current status and the development of microneedles, a strategy invented to transiently breach the skin’s stratum corneum to deliver drugs through the skin. We would also investigate the different types of microneedles, provide insights into the microneedles used in clinical trials and diffusion cell systems used to assess the efficacy of microneedles in their capacity to deliver drugs through the skin.


Skin Route of administration Transdermal delivery Microneedle Diffusion cell 


  1. 1.
    FDA (2013) Approved drug products with therapeutic equivalence evaluations, 33rd edn. U.S. Department of Health and Human Services, Rockville, MDGoogle Scholar
  2. 2.
    Marieb EN et al (2007) Human anatomy and physiology, 7th edn. Pearson Education, San FranciscoGoogle Scholar
  3. 3.
    Rein H (1924) Experimental electroendosmotic studies on living human skin. Zeitschrift Fur Biologie 81:125–140Google Scholar
  4. 4.
    Blank IH (1964) Penetration of low-molecular-weight alcohols into skin. I. Effect of concentration of alcohol and type of vehicle. J Invest Dermatol 43:415–420PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Scheuplein RJ (1965) Mechanism of percutaneous adsorption. I. Routes of penetration and the influence of solubility. J Invest Dermatol 45:334–346PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Scheuplein RJ et al (1971) Permeability of the skin. Physiol Rev 51:702–747PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Cevc G (1997) Drug delivery across the skin. Expert Opin Investig Drugs 6:1887–1937PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Brown MB (2003) Transdermal drug delivery. In: Jain KK (ed) Drug delivery systems, chap. 6, 2nd edn. CRC Press, BaselGoogle Scholar
  9. 9.
    Henzel MR, Loomba PK (2003) Transdermal delivery of sex steroids for hormone replacement therapy and contraception. A review of principles and practice. J Reprod Med 48:525–540Google Scholar
  10. 10.
    Kalia YN et al (1998) Transdermal drug delivery. Clinical aspects. Dermatol Clin 16:289–299PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Varvel JR et al (1989) Absorption characteristics of transdermally administered fentanyl. Anesthesiology 70:928–934PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Kormick CA et al (2003) Benefit-risk assessment of transdermal fentanyl for the treatment of chronic pain. Drug Saf 26:951–973CrossRefGoogle Scholar
  13. 13.
    Payne R et al (1998) Quality of life and cancer pain: satisfaction and side effects with transdermal fentanyl versus oral morphine. J Clin Oncol 16:1588–1593PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Jarupanich T et al (2003) Efficacy, safety and acceptability of a seven-day, transdermal estradiol patch for estrogen replacement therapy. J Med Assoc Thail 86:836–845Google Scholar
  15. 15.
    Archer DF et al (2004) The impact of improved compliance with a weekly contraceptive transdermal system (Ortho Evra) on contraceptive efficacy. Contraception 69:189–195PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Long C (2002) Common skin disorders and their topical treatment. In: Walters KA (ed) Dermatological and transdermal formulations. Marcel Dekker, New York, pp 41–60Google Scholar
  17. 17.
    Frei A et al (2003) A one year health economic model comparing transdermal fentanyl with sustained-release morphine in the treatment of chronic noncancer pain. J Pain Palliat Care Pharmacother 17:5–26PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Bos JD et al (2000) The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol 9:165–169PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Yano T et al (1986) Skin permeability of various non-steroidal anti-inflammatory drugs in man. Life Sci 39:1043–1050PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Southwell D et al (1984) Variations in permeability of human skin within and between specimens. Int J Pharm 18:299–309CrossRefGoogle Scholar
  21. 21.
    Steinstrasser I et al (1995) Dermal metabolism of topically applied drugs: pathways and models reconsidered. Pharm Acta Helv 70:3–24PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Hogan DJ et al (1990) Adverse dermatologic reactions to transdermal drug delivery systems. J Am Acad Dermatol 22:811–814PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Carmichael AJ (1994) Skin sensitivity and transdermal drug delivery. A review of the problem. Drug Saf 10:151–159PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Toole J et al (2002) Evaluation of irritation and sensitisation of two 50 microg/day oestrogen patches. Maturitas 43:257–263PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Murphy M et al (2000) Transdermal drug delivery systems and skin sensitivity reactions. Incidence and management. Am J Clin Dermatol 1:361–368PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Prausnitz MR et al (2004) Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov 3:115–124PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Prausnitz MR et al (2008) Transdermal drug delivery. Nat Biotechnol 26:1261–1268PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Michaels AS et al (1975) Drug permeation through human skin: theory and in vitro experimental measurement. AICHE J 21:985–996CrossRefGoogle Scholar
  29. 29.
    Daugherty AL et al (2003) Emerging technologies that overcome biological barriers for therapeutic protein delivery. Expert Opin Biol Ther 3:1071–1081PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Ahad A et al (2009) Chemical penetration enhancers: a patent review. Expert Opin Ther Pat 19:969–988PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Williams AC et al (1992) Skin absorption enhancers. Crit Rev Ther Drug Carrier Syst 9:305–353PubMedPubMedCentralGoogle Scholar
  32. 32.
    Finnin BC et al (1999) Transdermal penetration enhancers: applications, limitations, and potential. J Pharm Sci 88:955–958PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Wright IA et al (1992) Effects of body condition and estradiol on luteinizing hormone secretion in post-partum beef cows. Domest Anim Endocrinol 9:305–312PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Pohorecky LA et al (1992) Chronic ethanol treatment of rats and the myocardial beta-adrenoceptors. Alcohol 9:305–309PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Barrett A et al (1992) Immune responses to chronic myeloid leukaemia. Bone Marrow Transplant 9:305–311PubMedPubMedCentralGoogle Scholar
  36. 36.
    Ferrera JM et al (1992) The degree of participation in a family planning survey performed by personal interview. Aten Primaria 9:305–306. 308–310PubMedPubMedCentralGoogle Scholar
  37. 37.
    Burgess RC (1992) Technology and equipment review. Intracranial electrodes. J Clin Neurophysiol 9:305–313CrossRefGoogle Scholar
  38. 38.
    Kamboh MI et al (1992) Two common polymorphisms in the APO A-IV coding gene: their evolution and linkage disequilibrium. Genet Epidemiol 9:305–315PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Nigam R et al (1992) Treatment of dual diagnosis patients: a relapse prevention group approach. J Subst Abus Treat 9:305–309CrossRefGoogle Scholar
  40. 40.
    Lopez A et al (2000) Comparative enhancer effects of Span20 with Tween20 and Azone on the in vitro percutaneous penetration of compounds with different lipophilicities. Int J Pharm 202:133–140PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Kanikkannan N et al (2000) Structure-activity relationship of chemical penetration enhancers in transdermal drug delivery. Curr Med Chem 7:593–608PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Kang L et al (2007) Formulation development of transdermal dosage forms: quantitative structure-activity relationship model for predicting activities of terpenes that enhance drug penetration through human skin. J Control Release 120:211–219CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kang L et al (2007) Reversible effects of permeation enhancers on human skin. Eur J Pharm Biopharm 67:149–155PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kanikkannan N et al (2002) Skin permeation enhancement effect and skin irritation of saturated fatty alcohols. Int J Pharm 248:219–228PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Takanashi Y et al (1999) Thiomenthol derivatives as novel percutaneous absorption enhancers. Drug Dev Ind Pharm 25:89–94PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Akimoto T et al (2003) Novel transdermal drug penetration enhancer: synthesis and enhancing effect of alkyldisiloxane compounds containing glucopyranosyl group. J Control Release 88:243–252PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    McVary KT et al (1999) Topical prostaglandin E1 SEPA gel for the treatment of erectile dysfunction. J Urol 162:726–730; discussion 730-721PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Kalia YN et al (2004) Iontophoretic drug delivery. Adv Drug Deliv Rev 56:619–658PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Helmstadter A (2001) The history of electrically-assisted transdermal drug delivery (“iontophoresis”). Pharmazie 56:583–587PubMedPubMedCentralGoogle Scholar
  50. 50.
    Costello CT et al (1995) Iontophoresis: applications in transdermal medication delivery. Phys Ther 75:554–563PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Warwick WJ et al (1986) Evaluation of a cystic fibrosis screening system incorporating a miniature sweat stimulator and disposable chloride sensor. Clin Chem 32:850–853PubMedPubMedCentralGoogle Scholar
  52. 52.
    Holzle E et al (1987) Long-term efficacy and side effects of tap water iontophoresis of palmoplantar hyperhidrosis—the usefulness of home therapy. Dermatologica 175:126–135PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Miller KA et al (2001) 1% lidocaine injection, EMLA cream, or “numby stuff” for topical analgesia associated with peripheral intravenous cannulation. AANA J 69:185–187PubMedPubMedCentralGoogle Scholar
  54. 54.
    Tamada JA et al (1999) Noninvasive glucose monitoring: comprehensive clinical results. Cygnus Research Team. JAMA 282:1839–1844PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Prausnitz MR (1996) The effects of electric current applied to skin: a review for transdermal drug delivery. Adv Drug Deliv Rev 18:395–425CrossRefGoogle Scholar
  56. 56.
    Kanikkannan N (2002) Iontophoresis-based transdermal delivery systems. BioDrugs 16:339–347PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Mitragotri S et al (1996) Transdermal drug delivery using low-frequency sonophoresis. Pharm Res 13:411–420PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Denet AR et al (2004) Skin electroporation for transdermal and topical delivery. Adv Drug Deliv Rev 56:659–674PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Prausnitz MR et al (1995) Transdermal delivery of heparin by skin electroporation. Biotechnology (NY) 13:1205–1209Google Scholar
  60. 60.
    Sen A et al (2002) Transdermal insulin delivery using lipid enhanced electroporation. Biochim Biophys Acta 1564:5–8PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Misra A et al (1999) Needle-free, non-adjuvanted skin immunization by electroporation-enhanced transdermal delivery of diphtheria toxoid and a candidate peptide vaccine against hepatitis B virus. Vaccine 18:517–523PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Zhao YL et al (2006) Induction of cytotoxic T-lymphocytes by electroporation-enhanced needle-free skin immunization. Vaccine 24:1282–1290PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Zewert TE et al (1995) Transdermal transport of DNA antisense oligonucleotides by electroporation. Biochem Biophys Res Commun 212:286–292PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Ogura M et al (2008) Low-frequency sonophoresis: current status and future prospects. Adv Drug Deliv Rev 60:1218–1223PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Paliwal S et al (2006) Low-frequency sonophoresis: ultrastructural basis for stratum corneum permeability assessed using quantum dots. J Invest Dermatol 126:1095–1101PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Becker BM et al (2005) Ultrasound with topical anesthetic rapidly decreases pain of intravenous cannulation. Acad Emerg Med 12:289–295PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Clarys P et al (1998) In vitro percutaneous penetration through hairless rat skin: influence of temperature, vehicle and penetration enhancers. Eur J Pharm Biopharm 46:279–283PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Akomeah F et al (2004) Effect of heat on the percutaneous absorption and skin retention of three model penetrants. Eur J Pharm Sci 21:337–345PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Klemsdal TO et al (1992) Heating and cooling of the nitroglycerin patch application area modify the plasma level of nitroglycerin. Eur J Clin Pharmacol 43:625–628PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Park JH et al (2008) The effect of heat on skin permeability. Int J Pharm 359:94–103PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Levin G et al (2005) Transdermal delivery of human growth hormone through RF-microchannels. Pharm Res 22:550–555PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Herndon TO et al (2004) Transdermal microconduits by microscission for drug delivery and sample acquisition. BMC Med 2(12)Google Scholar
  73. 73.
    Glenn GM et al (2007) Transcutaneous immunization with heat-labile enterotoxin: development of a needle-free vaccine patch. Expert Rev Vaccines 6:809–819PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Lee WR et al (2003) Lasers and microdermabrasion enhance and control topical delivery of vitamin C. J Invest Dermatol 121:1118–1125PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Andrews SN et al (2013) Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharm Res 30:1099–1109PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Lee WR et al (2001) Transdermal drug delivery enhanced and controlled by erbium:YAG laser: a comparative study of lipophilic and hydrophilic drugs. J Control Release 75:155–166PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Jacques SL et al (1988) Controlled removal of human stratum corneum by pulsed laser to enhance percutaneous transport. In: USPTO (ed) The General Hospital Corporation, BostonGoogle Scholar
  78. 78.
    Lee S et al (1998) Photomechanical transcutaneous delivery of macromolecules. J Invest Dermatol 111:925–929PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Lee S et al (1999) Topical drug delivery in humans with a single photomechanical wave. Pharm Res 16:1717–1721PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Doukas AG et al (2004) Transdermal drug delivery with a pressure wave. Adv Drug Deliv Rev 56:559–579PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Sintov AC et al (2003) Radiofrequency-driven skin microchanneling as a new way for electrically assisted transdermal delivery of hydrophilic drugs. J Control Release 89:311–320PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Murthy SN (1999) Magnetophoresis: an approach to enhance transdermal drug diffusion. Pharmazie 54:377–379PubMedPubMedCentralGoogle Scholar
  83. 83.
    Murthy SN et al (2001) Physical and chemical permeation enhancers in transdermal delivery of terbutaline sulphate. AAPS PharmSciTech 2, E-TN1Google Scholar
  84. 84.
    Svedman P et al (1996) Passive drug diffusion via standardized skin mini-erosion; methodological aspects and clinical findings with new device. Pharm Res 13:1354–1359PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Giudice EL et al (2006) Needle-free vaccine delivery. Adv Drug Deliv Rev 58:68–89PubMedCrossRefGoogle Scholar
  86. 86.
    Gerstel MS et al. (1976) Drug delivery device. In: USPTO (ed) Alza corporation, chap. 3. Palo Alto. 964,482Google Scholar
  87. 87.
    Henry S et al (1998) Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci 87:922–925PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Kaushik S et al (2001) Lack of pain associated with microfabricated microneedles. Anesth Analg 92:502–504PubMedCrossRefGoogle Scholar
  89. 89.
    Belshe RB et al (2004) Serum antibody responses after intradermal vaccination against influenza. N Engl J Med 351:2286–2294PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Wilke N et al (2005) Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectron J 36:650–656CrossRefGoogle Scholar
  91. 91.
    Alarcon JB et al (2007) Preclinical evaluation of microneedle technology for intradermal delivery of influenza vaccines. Clin Vaccine Immunol 14:375–381PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Lee JW et al (2008) Dissolving microneedles for transdermal drug delivery. Biomaterials 29:2113–2124PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Kim YC et al (2012) Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 64:1547–1568PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Broderick KE (2012) Microneedles 2012. Ther Deliv 3:937–939PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Ji J et al (2006) Microfabricated microneedle with porous tip for drug delivery. J Micromech Microeng 16:958CrossRefGoogle Scholar
  96. 96.
    Donnelly RF et al (2010) Microneedle-based drug delivery systems: microfabrication, drug delivery, and safety. Drug Deliv 17:187–207PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Paik SJ et al (2004) In-plane single-crystal-silicon microneedles for minimally invasive microfluid systems. Sens Actuators A-Phys 114:276–284CrossRefGoogle Scholar
  98. 98.
    Wei-Ze L et al (2010) Super-short solid silicon microneedles for transdermal drug delivery applications. Int J Pharm 389:122–129CrossRefGoogle Scholar
  99. 99.
    Shikida M et al (2006) Fabrication of a hollow needle structure by dicing, wet etching and metal deposition. J Micromech Microeng 16:2230–2239CrossRefGoogle Scholar
  100. 100.
    Shikida M et al (2004) Non-photolithographic pattern transfer for fabricating arrayed three-dimensional microstructures by chemical anisotropic etching. Sens Actuators A Phys 116:264–271CrossRefGoogle Scholar
  101. 101.
    Wilke N et al (2005) Silicon microneedle electrode array with temperature monitoring for electroporation. Sens Actuators A-Phys 123–124:319–325CrossRefGoogle Scholar
  102. 102.
    Ma B et al (2006) A PZT insulin pump integrated with a silicon microneedle array for transdermal drug delivery. Microfluid Nanofluid 2:417–423CrossRefGoogle Scholar
  103. 103.
    Baron N et al (2008) Investigations of development process of high hollow beveled microneedles using a combination of ICP RIE and dicing saw. Microsyst Technol Micro Nanosyst-Inf Storage Process Syst 14:1475–1480Google Scholar
  104. 104.
    Chen B et al (2010) Sonophoretic enhanced microneedles array (SEMA)—Improving the efficiency of transdermal drug delivery. Sens Actuators B Chemical 145:54–60CrossRefGoogle Scholar
  105. 105.
    Han T et al (2013) Permeability enhancement for transdermal delivery of large molecule using low-frequency sonophoresis combined with microneedles. J Pharm Sci 102:3614–3622PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Gill HS et al (2007) Coated microneedles for transdermal delivery. J Control Release 117:227–237PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Martanto W et al (2004) Transdermal delivery of insulin using microneedles in vivo. Pharm Res 21:947–952PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Chandrasekaran S et al (2003) Surface micromachined metallic microneedles. J Microelectromech Syst 12:281–288CrossRefGoogle Scholar
  109. 109.
    Parker ER et al (2007) Bulk micromachined titanium microneedles. J Microelectromech Syst 16:289–295CrossRefGoogle Scholar
  110. 110.
    Jung PG et al (2008) Nickel microneedles fabricated by sequential copper and nickel electroless plating and copper chemical wet etching. Sens Mater 20:45–53Google Scholar
  111. 111.
    Gill HS et al (2008) Pocketed microneedles for drug delivery to the skin. J Phys Chem Solids 69:1537–1541PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Wang PM et al (2006) Precise microinjection into skin using hollow microneedles. J Invest Dermatol 126:1080–1087PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Bystrova S et al (2011) Micromolding for ceramic microneedle arrays. Microelectron Eng 88:1681–1684CrossRefGoogle Scholar
  114. 114.
    Gittard SD et al (2009) Pulsed laser deposition of antimicrobial silver coating on Ormocer® microneedles. Biofabrication 1(4):041001PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Gill HS et al (2007) Coating formulations for microneedles. Pharm Res 24:1369–1380PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Sullivan SP et al (2008) Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv Mater 20:933–938PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Kochhar JS et al (2013) A simple method of microneedle array fabrication for transdermal drug delivery. Drug Dev Ind Pharm 39:299–309CrossRefGoogle Scholar
  118. 118.
    Park JH et al (2006) Polymer microneedles for controlled-release drug delivery. Pharm Res 23:1008–1019CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Ito Y et al (2008) Evaluation of self-dissolving needles containing low molecular weight heparin (LMWH) in rats. Int J Pharm 349:124–129CrossRefGoogle Scholar
  120. 120.
    Li G et al (2009) In vitro transdermal delivery of therapeutic antibodies using maltose microneedles. Int J Pharm 368:109–115PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Miyano T et al (2007) Hydrolytic microneedles as transdermal drug delivery system. Transducers ’07 & Eurosensors Xxi, Digest of technical papers, vols. 1 and 2 ,Ieee, New York, pp U181–U182Google Scholar
  122. 122.
    Park JH et al (2005) Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release 104:51–66CrossRefGoogle Scholar
  123. 123.
    Moon SJ et al (2005) A novel fabrication method of a microneedle array using inclined deep x-ray exposure. J Micromech Microeng 15:903–911CrossRefGoogle Scholar
  124. 124.
    Perennes F et al (2006) Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol. J Micromech Microeng 16:473–479CrossRefGoogle Scholar
  125. 125.
    Aoyagi S et al (2007) Laser fabrication of high aspect ratio thin holes on biodegradable polymer and its application to a microneedle. Sens Actuators A Phys 139:293–302CrossRefGoogle Scholar
  126. 126.
    Ito Y et al (2006) Feasibility of microneedles for percutaneous absorption of insulin. Eur J Pharm Sci 29:82–88CrossRefGoogle Scholar
  127. 127.
    Kolli CS et al (2008) Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm Res 25:104–113PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Miyano T et al (2005) Sugar micro needles as transdermic drug delivery system. Biomed Microdevices 7:185–188CrossRefGoogle Scholar
  129. 129.
    Donnelly RF et al (2009) Processing difficulties and instability of carbohydrate microneedle arrays. Drug Dev Ind Pharm 35:1242–1254PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Ito Y et al (2006) Self-dissolving microneedles for the percutaneous absorption of EPO in mice. J Drug Target 14:255–261CrossRefGoogle Scholar
  131. 131.
    Park JH et al (2010) A microneedle roller for transdermal drug delivery. Eur J Pharm Biopharm 76:282–289CrossRefGoogle Scholar
  132. 132.
    Donnelly RF et al (2011) Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res 28:41–57PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Ltd NT (2007) A study to assess the safety and efficacy of a microneedle device for local Anesthesia. Retrieved April 22, 2013, from
  134. 134.
    Kong TUoH (2010) Dose sparing intradermal S-OIV H1N1 influenza vaccination device. Retrieved April 22, 2013, from
  135. 135.
    Oklahoma Uo (2010) Functional microarray augmentation of skin treatment with lidocaine (FAST). Retrieved April 22, 2013, from
  136. 136.
    Lyon HCD (2011) Optimization of tuberculosis intradermal skin test (TB Dermatest). Retrieved April 22, 2013, from
  137. 137.
    University N (2010) Tolerability study of the application of a 3M microstructure transdermal system. Retrieved April 22, 2013, from
  138. 138.
    Shah VP et al (2003) In vitro release: comparative evaluation of vertical diffusion cell system and automated procedure. Pharm Dev Technol 8:97–102PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Friend DR (1992) In vitro skin permeation techniques. J Control Release 18:235–248CrossRefGoogle Scholar
  140. 140.
    Wiiliams AC (2003) Transdermal and topical drug delivery. Pharmaceutical Press, LondonGoogle Scholar
  141. 141.
    Stehle RG et al (1972) In vitro model for transport of solutes in three-phase system. II. Experimental considerations. J Pharm Sci 61:1931–1935PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Diembeck W et al (1999) Test guidelines for in vitro assessment of dermal absorption and percutaneous penetration of cosmetic ingredients. European cosmetic, toiletry and perfumery association. Food Chem Toxicol 37:191–205PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Washitake M et al (1980) Drug permeation through egg shell membranes. Chem Pharm Bull (Tokyo) 28:2855–2861CrossRefGoogle Scholar
  144. 144.
    Chien YW et al (1984) Development of a dynamic skin permeation system for long-term permeation studies. Drug Dev Ind Pharm 10:575–599CrossRefGoogle Scholar
  145. 145.
    Saydek ME et al (1989) Apparatus for the percutaneous absorptionof fluids. USPTOGoogle Scholar
  146. 146.
    Higuchi T, Kans L (1988) Methods and apparatus for determining the rate of movement of a study substance through a membrane. USPTOGoogle Scholar
  147. 147.
    Flynn GL et al (1971) Membrane diffusion. I. Design and testing of a new multifeatured diffusion cell. J Pharm Sci 60:1713–1717PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Wurster DE et al (1979) Sarin transport across excised human skin I: permeability and adsorption characteristics. J Pharm Sci 68:1406–1409PubMedCrossRefPubMedCentralGoogle Scholar
  149. Coldman MF et al (1969) Enhancement of percutaneous absorption by the use of volatile: nonvolatile systems as vehicles. J Pharm Sci 58:1098–1102PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Franz TJ (1975) Percutaneous absorption. On the relevance of in vitro data. J Investigat Dermatol 64:190–195CrossRefGoogle Scholar
  151. 151.
    Gummer CL et al (1987) The skin penetration cell – a design update. Int J Pharm 40:101–104CrossRefGoogle Scholar
  152. 152.
    Smith EW et al (1992) In vitro diffusion cell design and validation. II. Temperature, agitation and membrane effects on betamethasone 17-valerate permeation. Acta Pharm Nord 4:171–178PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jaspreet Singh Kochhar
    • 1
  • Justin J. Y. Tan
    • 2
  • Yee Chin Kwang
    • 3
  • Lifeng Kang
    • 3
  1. 1.Procter & GambleSingaporeSingapore
  2. 2.Department of PharmacyNational University of SingaporeSingaporeSingapore
  3. 3.School of PharmacyUniversity of SydneySydneyAustralia

Personalised recommendations