Advertisement

Cooperative Spectrum Handovers in Cognitive Radio Networks

  • Anandakumar Haldorai
  • Umamaheswari Kandaswamy
Chapter
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)

Abstract

Cognitive radio networks are an innovative technology that focuses on the radical shift in both radio and networking technologies that ensemble with the potential to provide major performance gains in optimizing the efficiency of any spectrum. As cognitive radio domains have started to progress significantly, new research work is required to address some prevailing technical challenges like Dynamic Spectrum Allocation (DSA) methods, spectrum sensing, cooperative communications, cognitive network architecture protocol design, cognitive network security challenges and dynamic adaptation algorithms for cognitive system and the evolving behavior of systems in general. This chapter highlights the need for an efficient Handover Decision (HD) mechanism to perform switches from one network to another, to provide unified and continuous mobile services that include seamless connectivity and ubiquitous service access. The HD involves efficiently combining handover initiation and network selection process. The network selection decision is a challenging task and it is a central component to making HD for any mobile user in a heterogeneous environment that involves a number of static and dynamic parameters.

Keywords

Wireless communication Cognitive radio Handovers Spectrum Network selection 

References

  1. 1.
    Jo, O., Cho, D.H.: Seamless spectrum handover considering differential path-loss in cognitive radio systems. IEEE Commun. Lett. 13(3), 190–192 (2009)CrossRefGoogle Scholar
  2. 2.
    Au, E.K., Cavalcanti, D., Li, G.Y., Caldwell, W., Letaief, K.B.: Advances in standards and test beds for cognitive radio networks: part I [Guest Editorial]. IEEE Commun. Mag. 48(9), 76–77 (2010)CrossRefGoogle Scholar
  3. 3.
    Anandakumar, H., Umamaheswari, K.: An efficient optimized handover in cognitive radio networks using cooperative spectrum sensing. Intell. Autom. Soft Comput. 1–8 (2017)Google Scholar
  4. 4.
    Anandakumar, H., Arulmurugan, R., Onn, C.C.: Computational Intelligence and Sustainable Systems. In: EAI/Springer Innovations in Communication and Computing (2019)Google Scholar
  5. 5.
    Celebi, H., Arslan, H.: Utilization of location information in cognitive wireless networks. IEEE Wirel. Commun. 14(4), 6–13 (2007)CrossRefGoogle Scholar
  6. 6.
    Wang, B., Liu, K.J.R.: Advances in cognitive radio networks: a survey. IEEE J. Selected Topics Signal Process. 5, 5–23 (2011)CrossRefGoogle Scholar
  7. 7.
    Suganya, M., Anandakumar, H.: Handover based spectrum allocation in cognitive radio networks. In: 2013 International Conference on Green Computing, Communication and Conservation of Energy (ICGCE), Chennai, pp. 215–219 (2013)Google Scholar
  8. 8.
    Qing, Z., Sadler, B.M.: A survey of dynamic spectrum access. Signal Process. Mag. IEEE. 24, 79–89 (2007)CrossRefGoogle Scholar
  9. 9.
    Lu, L., Zhou, X., Onunkwo, U., Li, G.Y.: Ten years of research in spectrum sensing and sharing in cognitive radio. EURASIP J. Wirel. Commun. Netw. 2012, 28 (2012)CrossRefGoogle Scholar
  10. 10.
    Wu, Y., Yang, Z.: Coexistence of primary users and secondary users under interference temperature and SINR limit. J. Electron. 26, 303–311 (2009). (China)Google Scholar
  11. 11.
    Sherman, M., Mody, A.N., Martinez, R., Rodriguez, C., Reddy, R.: IEEE standards supporting cognitive radio and networks, dynamic Spectrum access, and coexistence. IEEE Commun. Mag. 46(7), 72–79 (2008)CrossRefGoogle Scholar
  12. 12.
    Mitola, I.I.I.: Cognitive Radio: an Integrated Agent Architecture for Software Defined Radio. Royal Institute of Technology (KTH), Stockholm (2000)Google Scholar
  13. 13.
    Akyildiz, W.L., Vuran, M., Mohanty, S.: Next generation dynamic spectrum access/cognitive radio wireless networks: a survey. Comput. Netw. 50(13), 2127–2159 (2006)CrossRefGoogle Scholar
  14. 14.
    Clancy, C., Hecker, J., Stuntebeck, E., O’Shea, T.: Applications of machine learning to cognitive radio networks. IEEE Wirel. Commun. 14(4), 47–52 (2007)CrossRefGoogle Scholar
  15. 15.
    Kasabov, N., Zhou, L., Gholami Doborjeh, M., Gholami Doborjeh, Z., Yang, J.: New algorithms for encoding, learning and classification of fMRI data in a spiking neural network architecture: a case on modelling and understanding of dynamic cognitive processes. In: IEEE Transactions on Cognitive and Developmental Systems, vol. 1-1, p. 99 (2016)Google Scholar
  16. 16.
    Azmat, Y., Chen, N.: Analysis of spectrum occupancy using machine learning algorithms. IEEE Trans. Veh. Technol. 65(9), 6853–6860 (2016)CrossRefGoogle Scholar
  17. 17.
    Pratama, M., Zhang, G., Er, M.J., Anavatti, S.: An incremental type-2 meta-cognitive extreme learning machine. IEEE Trans. Cybernetics. 47(2), 339–353 (2017)Google Scholar
  18. 18.
    Gong, X., Vorobyov, S.A., Tellambura, C.: Optimal bandwidth and power allocation for sum ergodic capacity under fading channels in cognitive radio networks. IEEE Trans. Signal Process. 59(4), 1814–1826 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Chen, Y.S., Hong, J.S.: A relay-assisted protocol for spectrum mobility and handover in cognitive LTE networks. IEEE Syst. J. 7(1), 77–91 (2013)CrossRefGoogle Scholar
  20. 20.
    Lu, D., Huang, X., Liu, C., Fan, J.: Adaptive power control based spectrum handover for cognitive radio networks. In: 2010 IEEE Wireless Communication and Networking Conference, Sydney, NSW, pp. 1–5 (2010)Google Scholar
  21. 21.
    Thilina, K.M., Choi, K.W., Saquib, N., Hossain, E.: Machine learning techniques for cooperative spectrum sensing in cognitive radio networks. IEEE J. Selected Areas Commun. 31(11), 2209–2221 (2013)CrossRefGoogle Scholar
  22. 22.
    Yuan, W., Leung, H., Cheng, W., Chen, S.: Optimizing voting rule for cooperative spectrum sensing through learning automata. IEEE Trans. Veh. Technol. 60(7), 3253–3264 (2011)CrossRefGoogle Scholar
  23. 23.
    Chen, H., Zhou, M., Xie, L., Wang, K., Li, J.: Joint spectrum sensing and resource allocation scheme in cognitive radio networks with spectrum sensing data falsification attack. IEEE Trans. Veh. Technol. 65(11), 9181–9191 (2016)CrossRefGoogle Scholar
  24. 24.
    Zhang, F., Zhou, X., Cao, X.: Location-oriented evolutionary games for price-elastic spectrum sharing. IEEE Trans. Commun. 64(9), 3958–3969 (2016)CrossRefGoogle Scholar
  25. 25.
    Ma, W., Fang, Y.: A pointer forwarding based local anchoring (POFLA) scheme for wireless networks. IEEE Trans. Veh. Technol. 54(3), 1135–1146 (2005).  https://doi.org/10.1109/TVT.2005.844651CrossRefGoogle Scholar
  26. 26.
    Anandakumar, H., Umamaheswari, K.: Energy efficient network selection using 802.16g based GSM technology. J. Comput. Sci. 10(5), 745–754 (2014)CrossRefGoogle Scholar
  27. 27.
    Anandakumar, H., Umamaheswari, K.: Cooperative spectrum handovers in cognitive radio networks. In: EAI/Springer Innovations in Communication and Computing, pp. 47–63 (2018)Google Scholar
  28. 28.
    Anandakumar, H., Umamaheswari, K.: A bio-inspired swarm intelligence technique for social aware cognitive radio handovers. Comput. Elect. Eng. 71, 925–937 (2018)CrossRefGoogle Scholar
  29. 29.
    Gavrilovska, L., Atanasovski, V., Macaluso, I., DaSilva, L.: Learning and reasoning in cognitive radio networks. IEEE Commun. Surv. Tutor. 15(4), 1761–1777 (2013)CrossRefGoogle Scholar
  30. 30.
    Lee, A., Helal, Y.: Sung, Anton, S.: situation-based assess tree for user behavior assessment in persuasive Telehealth. IEEE Trans. Human Mach. Syst. 45(5), 624–634 (2015)CrossRefGoogle Scholar
  31. 31.
    Choi, K.W., Hossain, E., Kim, D.I.: Cooperative spectrum sensing under a random geometric primary user network model. IEEE Trans. Wirel. Commun. 10(6), 1932–1944 (2011)CrossRefGoogle Scholar
  32. 32.
    Haldorai, A., Ramu, A., Murugan, S.: Social aware cognitive radio networks. In: Social Network Analytics for Contemporary Business Organizations, pp. 188–202 (2018)CrossRefGoogle Scholar
  33. 33.
    Anandakumar, H., Umamaheswari, K.: Supervised machine learning techniques in cognitive radio networks during cooperative spectrum handovers. Clust. Comput. 20(2), 1505–1515 (2017)CrossRefGoogle Scholar
  34. 34.
    Cabric, D., Mishra, S.M., Brodersen, R.W.: Implementation issues in spectrum sensing for cognitive radios. In: Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 772–776 (2004)CrossRefGoogle Scholar
  35. 35.
    Yucek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun. Surv. Tutor. 11(1), 116–130 (2009).  https://doi.org/10.1109/SURV.2009.090109CrossRefGoogle Scholar
  36. 36.
    Shen, J., Jiang, T., Liu, S., Zhang, Z.: Maximum channel throughput via cooperative spectrum sensing in cognitive radio networks. IEEE Trans. Wirel. Commun. 8(10), 5166–5175 (2009)CrossRefGoogle Scholar
  37. 37.
    Zhao, Z., Peng, Z., Zheng, S., Shang, S.: Cognitive radio spectrum allocation using evolutionary algorithms. IEEE Trans. Wirel. Commun. 8(9), 4421–4425 (2009)CrossRefGoogle Scholar
  38. 38.
    Haldorai, A., Ramu, A.: Cognitive social mining applications in data analytics and forensics. Adv. Soc. Netw. Online Commun. 1, 1–250 (2019)Google Scholar
  39. 39.
    Sadreddini, Z., Güler, E., Çavdar, T.: PSO-optimized instant overbooking framework for cognitive radio networks. In: 2015 38th International Conference on Telecommunications and Signal Processing (TSP), Prague, pp. 49–53 (2015)CrossRefGoogle Scholar
  40. 40.
    Wang, G., Guo, C., Feng, S., Feng, C., Wang, S.: A two-stage cooperative spectrum sensing method for energy efficiency improvement in cognitive radio. In: 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, pp. 876–880 (2013)CrossRefGoogle Scholar
  41. 41.
    Xu, H., Zhou, Z.: Cognitive radio decision engine using hybrid binary particle swarm optimization. In: 2013 13th International Symposium on Communications and Information Technologies (ISCIT), Surat Thani, pp. 143–147 (2013)Google Scholar
  42. 42.
    Haldorai, A., Ramu, A., Chow, C.-O.: Editorial: Big Data innovation for sustainable cognitive computing. Mobile Netw. Appl. 1, 1–250 (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anandakumar Haldorai
    • 1
  • Umamaheswari Kandaswamy
    • 2
  1. 1.Department of Computer Science and EngineeringSri Eshwar College of EngineeringCoimbatoreIndia
  2. 2.Department of Information TechnologyPSG College of TechnologyCoimbatoreIndia

Personalised recommendations