Advertisement

Citrus Reproductive Biology from Flowering to Fruiting

  • Gaetano DistefanoEmail author
  • Giuseppina Las Casas
  • Xiuxin Deng
  • Lijun Chai
Chapter
  • 38 Downloads
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Citrus reproductive biology is characterized by peculiar processes such as self-incompatibility, parthenocarpy, and nucellar embryony. The understanding of citrus flowering mechanism is quite important since it will lead to control of production quality, efficiency, and timing of crops. In cultivation and breeding programs of citrus, the flowering behavior is strictly related to juvenility and alternate bearing. In citrus fruit, the failure of the sexual reproductive process (e.g., female and/or male sterility) in parthenocarpic cultivars results in seedless fruits. In contrast to other fruit crops, sterility can be considered a benefit to avoid the presence of seeds, which is one of the main quality parameters for fresh citrus fruit consumption. Here we review the current state of knowledge about the genetic control of reproductive biology in several citrus and its closed related species.

References

  1. Ai XY, Zhang JZ, Liu TJ, Hu CG (2016) PtFCA from precocious trifoliate orange is regulated by alternative splicing and affects flowering time and root development in transgenic Arabidopsis. Tree Genet Genomes 12:85.  https://doi.org/10.1007/s11295-016-1035-6CrossRefGoogle Scholar
  2. Cameron JW, Soost RK (1979) Sexual and nucellar embryony in F1 hybrids and advanced crosses of Citrus with Poncirus. J Am Soc Hortic Sci 104:408–410Google Scholar
  3. Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc 61(1):51–94CrossRefGoogle Scholar
  4. Caruso M, Merelo P, Distefano G, La Malfa S, Lo Piero AR, Tadeo FR, Talon M, Gentile A (2012) Comparative transcriptome analysis of stylar canal cells identifies novel candidate genes implicated in the self-incompatibility response of Citrus clementina. BMC Plant Biol 12:20PubMedPubMedCentralCrossRefGoogle Scholar
  5. Chai L, Ge X, Biswas MK, Deng X (2011a) Molecular analysis and expression of a floral organ-relative F-box gene isolated from ‘Zigui shatian’ pummelo (Citrus grandis Osbeck). Mol Biol Rep 38:4429–4436PubMedCrossRefPubMedCentralGoogle Scholar
  6. Chai L, Ge X, Biswas MK, Xu Q, Deng X (2011b) Self-sterility in the mutant ‘Zigui shatian’ pummelo (Citrus grandis Osbeck) is due to abnormal post-zygotic embryo development and not self-incompatibility. Plant Cell Tissue Organ Cult (PCTOC) 104:1–11CrossRefGoogle Scholar
  7. Chai L, Ge X, Xu Q, Deng X (2011c) CgSL2, an S-like RNase gene in ‘Zigui shatian’ pummelo (Citrus grandis Osbeck), is involved in ovary senescence. Mol Biol Rep 38:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  8. Chica EJ, Albrigo LG (2013a) Expression of flower promoting genes in sweet orange during floral inductive water deficits. J Am Soc Hortic Sci 138:88–94CrossRefGoogle Scholar
  9. Chica EJ, Albrigo LG (2013b) Changes in CsFT transcript abundance at the onset of low-temperature floral induction in sweet orange. J Am Soc Hortic Sci 138:184–189CrossRefGoogle Scholar
  10. De Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer, BerlinCrossRefGoogle Scholar
  11. Distefano G, Las Casas G, La Malfa S, Gentile A, Tribulato E, Herrero M (2009a) Pollen tube behavior in different mandarin hybrids. J Am Soc Hortic Sci 134:583–588CrossRefGoogle Scholar
  12. Distefano G, Caruso M, La Malfa S, Gentile A, Tribulato E (2009b) Histological and molecular analysis of pollen–pistil interaction in clementine. Plant Cell Rep 28:1439–1451PubMedCrossRefPubMedCentralGoogle Scholar
  13. Dornelas M, Camargo R, Figueiredo L, Takita M (2007) A genetic framework for flowering-time pathways in Citrus spp. Genet Mol Biol 30:769–779CrossRefGoogle Scholar
  14. Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res 14:703–712PubMedCrossRefPubMedCentralGoogle Scholar
  15. Endo T, Shimada T, Fujii H, Nishikawa F, Sugiyama A, Nakano M, Shimizu T, Kobayashi Y, Araki T, Peña L, Omura M (2009) Development of a CiFT co-expression system for functional analysis of gene in citrus flowers and fruit. J Jpn Soc Hortic Sci 78:74–83CrossRefGoogle Scholar
  16. García R, Asíns MJ, Forner J, Carbonell EA (1999) Genetic analysis of apomixis in Citrus and Poncirus by molecular markers. Theor Appl Genet 99:511–518PubMedCrossRefPubMedCentralGoogle Scholar
  17. Goldberg-Moeller R, Shalom L, Shlizerman L, Samuels S, Zur N, Ophir R, Blumwald E, Sadka A (2013) Effects of gibberellin treatment during flowering induction period on global gene expression and the transcription of flowering control genes in Citrus buds. Plant Sci 198:46–57PubMedCrossRefPubMedCentralGoogle Scholar
  18. Iwamasa M, Ueno I, Nishiura M (1967) Inheritance of nucellar embryony in citrus. Bull Hortic Res 7:8–11Google Scholar
  19. Jeong S, Palmer TM, Lukowitz W (2011) The RWP-RK factor GROUNDED promotes embryonic polarity by facilitating YODA MAP kinase signaling. Curr Biol 21:1268–1276PubMedCrossRefPubMedCentralGoogle Scholar
  20. Kakade V, Dubey AK, Sharma RM, Malik SK (2017) Gametophytic self-incompatibility causes seedlessness in ‘Kagzi Kalan’ lemon (Citrus limon). J Hortic Sci Biotechnol 92:303–312CrossRefGoogle Scholar
  21. Kepiro JL, Roose ML (2010) AFLP markers closely linked to a major gene essential for nucellar embryony (apomixis) in Citrus maxima x Poncirus trifoliata. Tree Genet Genomes 6:1–11CrossRefGoogle Scholar
  22. Khan MRG, Ai XY, Zhang JZ (2014) Genetic regulation off lowering time in annual and perennial plants. Wiley Interdiscip Rev 5:347–359.  https://doi.org/10.1002/wrna.1215CrossRefGoogle Scholar
  23. Koltunow AM, Grossniklaus U (2003) APOMIXIS: a developmental perspective. Annu Rev Plant Biol 54:547–574PubMedCrossRefPubMedCentralGoogle Scholar
  24. Kumar V, Malik SK, Pal D, Srinivasan R, Bhat SR (2014) Comparative transcriptome analysis of ovules reveals stress related genes associated with nucellar polyembryony in citrus. Tree Genet Genomes 10:449–464CrossRefGoogle Scholar
  25. Li JX, Hou XJ, Zhu J, Zhou JJ, Huang HB, Yue JQ, Gao JY, Du YX, Hu CX, Hu CG, Zhang JZ (2017) Identification of genes associated with lemon floral transition and flower development during floral inductive water deficits: a hypothetical model front. Plant Sci 8:1013.  https://doi.org/10.3389/fpls.2017.01013CrossRefGoogle Scholar
  26. Li ZM, Zhang JZ, Mei L, Deng XX, Hu CG, Yao JL (2010) PtSVP, an SVP homolog from trifoliate orange (Poncirus trifoliata L. Raf.), shows seasonal periodicity of meristem determination and affects flower development in transgenic Arabidopsis and tobacco plants. Plant Mol Biol 74:129–142.  https://doi.org/10.1007/s11103-010-9660-1CrossRefPubMedPubMedCentralGoogle Scholar
  27. Liang M, Yang W, Su S, Fu L, Yi H, Chen C, Deng X, Chai L (2017) Genome-wide identification and functional analysis of S-RNase involved in the self-incompatibility of citrus. Mol Genet Genomics MGG 292:325–341PubMedCrossRefPubMedCentralGoogle Scholar
  28. Liang M, Yang X, Li H, Su S, Yi H, Chai L, Deng X (2015) De novo transcriptome assembly of pummelo and molecular marker development. PLoS One 10:e0120615PubMedPubMedCentralCrossRefGoogle Scholar
  29. Liu Y, Ke L, Wu G, Xu Y, Wu X, Xia R, Deng X, Xu Q (2017) miR3954 is a trigger of phasiRNAs that affects flowering time in citrus. Plant J 92(2):263–275.  https://doi.org/10.1111/tpj.13650. Epub 2 Sept 2017PubMedCrossRefPubMedCentralGoogle Scholar
  30. Long JM, Liu Z, Wu XM, Fang YN, Jia HH, Xie ZZ, Deng XX, Guo WW (2016) Genome-scale mRNA and small RNA transcriptomic insights into initiation of citrus apomixis. J Exp Bot 67:5743–5756PubMedPubMedCentralCrossRefGoogle Scholar
  31. Lord EM, Eckard KJ (1987) Shoot development in Citrus sinensis L. (Washington navel orange). II. Alteration of developmental fate of flowering shoots after GA3 treatment. Bot Gaz 148:17–22CrossRefGoogle Scholar
  32. Lush WM, Clarke AE (1997) Observations of pollen tube growth in Nicotiana alata and their implications for the mechanism of self-incompatibility. Sex Plant Reprod 10:27–35CrossRefGoogle Scholar
  33. Ma Y, Li Q, Hu G, Qin Y (2017) Comparative transcriptional survey between self-incompatibility and self-compatibility in Citrus reticulata Blanco. Gene 609:52–61PubMedCrossRefPubMedCentralGoogle Scholar
  34. Miao HX, Qin YH, Teixeira da Silva JA, Ye ZX, Hu GB (2011a) Cloning and expression analysis of S-RNase homologous gene in Citrus reticulata Blanco cv. Wuzishatangju. Plant Sci Int J Exp Plant Biol 180:358–367Google Scholar
  35. Miao HX, Qin YH, Teixeira Da Silva JA, Ye ZX, Hu GB (2011b) Isolation and differential expression analysis of self-compatibility-related genes from mature pistils of ‘Shatangju’ mandarin (Citrus reticulata Blanco). J Hortic Sci Biotechnol 86:575–582CrossRefGoogle Scholar
  36. Monselise S, Goldschmidt E (1982) Alternate bearing in fruit trees. Hortic Rev 4:128–173Google Scholar
  37. Muñoz-Fambuena N, Mesejo C, González-Mas M, Iglesias D, Primo-Millo E, Agustí M (2012) Gibberellic acid reduces flowering intensity in sweet orange [Citrus sinensis (L.) Osbeck] by repressing CiFT gene expression. J Plant Growth Regul 31:529–536CrossRefGoogle Scholar
  38. Muñoz-Fambuena N, Mesejo C, González-Mas M, Primo-Millo E, Agustí M, Iglesias D (2011) Fruit regulates seasonal expression of flowering genes in alternate-bearing ‘Moncada’ mandarin. Ann Bot 108:511–519PubMedPubMedCentralCrossRefGoogle Scholar
  39. Nakanishil T, Yamazaki T, Funadera K, Tomonaga H, Ozaki T, Kawai Y, Ichii T, Satoh Y, Kurihara A (1992) Isoelectric focusing analysis of stylar proteins associated with self-incompabibility alleles in Japanese pear. J Jpn Soc Hortic Sci 61:239–248CrossRefGoogle Scholar
  40. Nakano M, Shimada T, Endo T, Fujii H, Nesumi H, Kita M, Ebina M, Shimizu T, Omura M (2012) Characterization of genomic sequence showing strong association with polyembryony among diverse Citrus species and cultivars, and its synteny with Vitis and Populus. Plant Sci 183:131–142PubMedCrossRefPubMedCentralGoogle Scholar
  41. Nakano M, Kigoshi K, Shimizu T, Endo T, Shimada T, Fujii H, Omura M (2013) Characterization of genes associated with polyembryony and in vitro somatic embryogenesis in citrus. Tree Genet Genomes 9:795–803CrossRefGoogle Scholar
  42. Nakano M, Shimizu T, Fujii H, Shimada T, Endo T, Nesumi H, Kuniga M, Omura M et al (2008a) Marker enrichment and construction of haplotype-specific BAC contigs for the polyembryony genomic region in citrus. Breed Sci 58:375–383CrossRefGoogle Scholar
  43. Nakano M, Shimizu T, Kuniga T, Nesumi H, Omura M (2008b) Mapping and haplotyping of the flanking region of the polyembryony locus in citrus unshiu Marcow. J Jpn Soc Hortic Sci 77:109–114CrossRefGoogle Scholar
  44. Newbigin E, Anderson MA, Clarke AE (1993) Gametophytic self-incompatibility systems. Plant Cell 5:1315–1324PubMedPubMedCentralCrossRefGoogle Scholar
  45. Ngo BX, Wakana A, Kim JH, Mori T, Sakai AK (2010) Estimation of self-incompatibility S genotypes of Citrus cultivars and plants based on controlled pollination with restricted number of pollen grains. J Fac Agr Kyushu Univ 55:67–72Google Scholar
  46. Ngo BX, Wakana A, Park SM, Nada Y, Fukudome I (2001) Pollen tube behaviors in self-incompatible and self-compatible Citrus cultivars. J Fac Agric Kyushu Univ 45:443–457Google Scholar
  47. Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Omura M, Ikoma Y (2007) Increased CiFT abundance in the stem correlates with floral induction by low temperature in satsuma mandarin (Citrus unshiu Marc.). J Exp Bot 58:3915–3927PubMedCrossRefPubMedCentralGoogle Scholar
  48. Nishikawa F, Iwasaki M, Fukamachi H, Endo T (2017) Predicting the number of flowers in Satsuma Mandarin (Citrus unshiu Marc.) trees based on Citrus FLOWERING LOCUS T mRNA levels. Hortic J 86 (3):305–310Google Scholar
  49. Nishikawa F, Iwasaki M, Fukamachi H, Endo T (2013) Leaf removal suppresses citrus FLOWERING LOCUS T ex-pression in satsuma mandarin. Bull Natl Inst Fruit TreeSci 15:1–6Google Scholar
  50. Nishikawa F, Iwasaki M, Fukamachi H, Nonaka K, Imai A, Takishita F, Yano T, Endo T (2012) Fruit bearing suppresses citrus FLOWERING LOCUS T expression in vegetative shoots of satsuma mandarin (Citrus unshiu Marc.). J Jpn Soc Hortic Sci 81:48–53CrossRefGoogle Scholar
  51. Ozias-Akins P (2006) Apomixis: developmental characteristics and genetics. Crit Rev Plant Sci 25(2):199–214CrossRefGoogle Scholar
  52. Pajon M, Moore GA, Febres VJ (2017) Expression patterns of flowering genes in leaves of ‘Pineapple’ sweet orange [Citrus sinensis (L.) Osbeck] and pummelo (Citrus grandis Osbeck). BMC Plant Biol 17(1):146Google Scholar
  53. Parlevliet JE, Carmenon JW (1959) Evidence on the inheritance of nucellar embryony in citrus. Proc Am Soc Hortic Sci 74:252–260Google Scholar
  54. Peña L, Martín-Trillo M, Juárez J, Pina J, Navarro L, Martínez-Zapater J (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biothechnol 19:263–267CrossRefGoogle Scholar
  55. Pillitteri L, Lovatt C, Walling L (2004a) Isolation and characterization of a TERMINAL FLOWER homolog and its correlation with juvenility in citrus. Plant Physiol 135:1540–1551PubMedPubMedCentralCrossRefGoogle Scholar
  56. Pillitteri L, Lovatt C, Walling L (2004b) Isolation and characterization of LEAFY and APETALA1homologues from Citrus sinensis L. Osbek ‘Washington’. J Am Soc Hortic Sci 129:846–856CrossRefGoogle Scholar
  57. Qin X, Xiong J, Yang J, Wan S, Wei S (2008) Construction and analysis of suppression subtractive hybridization library related to Gametophytic self-incompatibility in style of Citrus grandis var. shatinyu. Hortic J Trop Subtrop Bot 16:425–429Google Scholar
  58. Raga V, Bernet GP, Carbonell EA, Asins MJ (2012) Segregation and linkage analyses in two complex populations derived from the citrus rootstock Cleopatra mandarin. Inheritance of seed reproductive traits. Tree Genet Genomes 8:1061–1071CrossRefGoogle Scholar
  59. Samach A (2012) Congratulations, you have been carefully chosen to represent an important developmental regulator! Ann Bot 111:329–333PubMedPubMedCentralCrossRefGoogle Scholar
  60. Shalom L, Samuels S, Zur N, Shlizerman L, Zemach H, Weissberg M, Ophir R, Blumwald E, Sadka A (2012) Alternate bearing in citrus: changes in the expression of flowering control genes and in global gene expression in ON versus OFF-Crop Trees. PLoS One 7:e46930.  https://doi.org/10.1371/journal.pone.00430. https://www.plosone.org/
  61. Shimada T, Endo T, Fujii H, Nakano M, Sugiyama A, Daido G, Ohta S, Yoshioka T, Omura M (2018) MITE insertion-dependent expression of CitRKD1 with a RWP-RK domain regulates somatic embryogenesis in citrus nucellar tissues. BMC Plant Biol 18:166PubMedPubMedCentralCrossRefGoogle Scholar
  62. Sonneveld T, Tobutt KR, Robbins TP (2003) Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S1 to S16 using consensus and allele-specific primers. Theor Appl Genet 107:1059–1070PubMedCrossRefPubMedCentralGoogle Scholar
  63. Spiegel‐Roy P, Goldschmidt EE (1996) Biology of citrus. Cambridge University Press, CambridgeGoogle Scholar
  64. Spillane C, Steimer A, Grossniklaus U (2001) Apomixis in agriculture: the quest for clonal seeds. Sex Plant Reprod 14:179–187PubMedCrossRefPubMedCentralGoogle Scholar
  65. Sun LM, Zhang JZ, Hu CG (2016) Characterization and expression analysis of PtAGL24, a SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24 (SVP/AGL24)-Type MADS-Box Gene from Trifoliate Orange (Poncirus trifoliata L. Raf.). Front Plant Sci 7:823Google Scholar
  66. Tan FC, Swain S (2007) Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis). Physiol Plant 131:481–495PubMedCrossRefPubMedCentralGoogle Scholar
  67. Uchida A, Sassa H, Takenaka S, Sakakibara Y, Suiko M, Kunitake H (2012) Identification of self-incompatibility related proteins in the pistil of Japanese pear [Pyrus pyrifolia (Burm. f.)] by proteome analysis. Plant Omics J 5:320–325Google Scholar
  68. Ushijima K, Sassa H, Tao R, Yamane H, Dandekar AM, Gradziel TM, Hirano H (1998) Cloning and characterization of cDNAs encoding S-RNases from almond (Prunus dulcis): primary structural features and sequence diversity of the S-RNases in Rosaceae. Mol Gen Genet MGG 260:261–268PubMedCrossRefPubMedCentralGoogle Scholar
  69. Velázquez K, Aguero J, Vives MC, Aleza P, Pina JA, Moreno P, Navarro L, Guerri J (2016) Precocious flowering of juvenile citrus induced by a viral vector based on Citrus leaf blotch virus: a new tool for genetics and breeding. Plant Biotechnol J 14:1976–1985PubMedPubMedCentralCrossRefGoogle Scholar
  70. Wakana A, Ngo BX, Fukudome I, Kajiwara K (2004) Estimation of the degree of self-incompatibility reaction during flower bud development and production of selffertilized seeds by bud pollination in self-incompatible Citrus cultivars. J Fac Agr Kyushu Univ 49:307–320Google Scholar
  71. Waki T, Hiki T, Watanabe R, Hashimoto T, Nakajima K (2011) The Arabidopsis RWP-RK protein RKD4 triggers gene expression and pattern formation in early embryogenesis. Curr Biol 21:1277–1281PubMedCrossRefPubMedCentralGoogle Scholar
  72. Wang X, Xu Y, Zhang S, Cao L, Huang Y, Cheng J, Wu G, Tian S, Chen C, Liu Y, Yu H, Yang X, Lan H, Wang N, Wang L, Xu J, Jiang X, Xie Z, Tan M, Larkin RM, Chen LL, Ma BG, Ruan Y, Deng X, Xu Q (2017) Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat Genet 49:765–772PubMedCrossRefPubMedCentralGoogle Scholar
  73. Yamamoto M, Kubo T, Tominaga S (2006) Self-and cross-incompatibility of various citrus accessions. J Jpn Soc Hortic Sci 75(5):372–378CrossRefGoogle Scholar
  74. Zhang JZ, Li ZM, Mei L, Yao JL, Hu CG (2009a) PtFLChomologfrom trifoliate orange (Poncirus trifoliata) is regulated by alternative splicing and experiences seasonal fluctuation in expression level. Planta 229:847–859PubMedCrossRefPubMedCentralGoogle Scholar
  75. Zhang J, Tao N, Xu Q, Zhou W, Cao H, Xu J, Deng X (2009b) Functional characterization of Citrus PSY gene in Hongkong kumquat (Fortunella hindsii Swingle). Plant Cell Rep 28(11):1737PubMedCrossRefPubMedCentralGoogle Scholar
  76. Zhang SW, Ding F, He XH, Luo C, Huang GX, Hu Y (2015) Characterization of the 'Xiangshui' lemon transcriptome by de novo assembly to discover genes associated with self-incompatibility. Mol Genet Genomics 290:365–375PubMedCrossRefPubMedCentralGoogle Scholar
  77. Zheng BB, Wu XM, Ge XX, Deng XX, Grosser JW, Guo WW (2012) Comparative transcript profiling of a Male Sterile Cybrid Pummelo and Its fertile type revealed altered gene expression related to flower development. PLoS One 7(8):e43758.  https://doi.org/10.1371/journal.pone.0043758CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Gaetano Distefano
    • 1
    Email author
  • Giuseppina Las Casas
    • 1
  • Xiuxin Deng
    • 2
  • Lijun Chai
    • 2
  1. 1.Department of Agriculture, Food and EnvironmentUniversity of CataniaCataniaItaly
  2. 2.Key Laboratory of Horticultural Plant Biology, Ministry of EducationHuazhong Agricultural UniversityWuhanChina

Personalised recommendations