Advertisement

Markers, Maps, and Marker-Assisted Selection

  • Tokurou ShimizuEmail author
  • Yıldız Aka Kacar
  • Mariângela Cristofani-Yaly
  • Maiara Curtolo
  • Marcos Antonio Machado
Chapter
  • 36 Downloads
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

DNA marker analysis, combined with linkage and quantitative trait locus (QTL) analyses, has drastically changed the scheme of citrus breeding by enabling the marker-assisted selection (MAS) of a promising scion at the early seedling stage. This technique has greatly enhanced breeding efficiency by minimizing the period of trait evaluation at the orchard. It has also provided remarkable achievements for understanding the classification and pedigree of citrus varieties by molecular phylogenetic analysis. In the past decades, valuable DNA markers have been developed from various crosses undertaken for the selection of fruit traits, apomixis, dwarfism and for resistance against pests, stress, or acclimation. Zygotic embryo selection is a basic but important application of MAS for the cross of polyembryonic seed parents. The advent of next-generation sequencing technologies dramatically enhanced the accumulation of genome sequence data. They were used for the development of codominant DNA marker systems (simple sequence repeat: SSR and single nucleotide polymorphism: SNP) that enabled high-throughput genotyping and high-density linkage map construction. Consequently, they also enabled the identification of a gene or genome sequence responsible for a trait by associating the map with the genome sequence. While these advances provided us with the genomic basis for trait selection and the tools to improve breeding, MAS of a complex trait controlled by many genes having a small effect still remained a challenge due to the difficulty in conducting large scale genetic analysis in citrus. Now, two alternative analysis methods based on genome-wide genotype data, genome-wide association study (GWAS) and genomic selection (GS), have become available for identifying QTLs of any trait of interest without the need to cross for predicting the breeding value of offspring. These new methods facilitate the selection of complex traits as well as shed light on the significance of measuring methods, for these methods to become applicable.

Notes

Acknowledgements

The authors thank Emma Tacken, Ph.D., from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

References

  1. Ahmed S, Rattanpal HS, Kumari P, Singh J (2017) Study of genetic variability in citrus fruit crop by molecular markers. Int J Pure Appl Biosci 5:111–128Google Scholar
  2. Aka Kacar Y, Demirel A, Tuzcu O, Yesiloglu T, Ulas M, Yildirim B (2005) Preliminary results on fingerprinting of lemon genotypes tolerant to mal secco disease by RAPD markers. Biol—Sect Cell Mol Biol 60:295–300Google Scholar
  3. Aka Kacar Y, Byrne P, Teixeira da Silva J (2006) Molecular markers in plant tissue culture. In: da Silva JAT (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, vol II, 1st edn. Global Science Books, pp 444–449Google Scholar
  4. Aleza P, Juárez J, Hernández M, Pina JA, Ollitrault P, Navarro L (2009) Recovery and characterization of a Citrus clementina Hort. ex Tan. “Clemenules” haploid plant selected to establish the reference whole Citrus genome sequence. BMC Plant Biol 9:110.  https://doi.org/10.1186/1471-2229-9-110PubMedPubMedCentralCrossRefGoogle Scholar
  5. Aleza P, Juárez J, Cuenca J, Ollitrault P, Navarro L (2010) Recovery of citrus triploid hybrids by embryo rescue and flow cytometry from 2x × 2x sexual hybridisation and its application to extensive breeding programs. Plant Cell Rep 29:1023–1034.  https://doi.org/10.1007/s00299-010-0888-7CrossRefPubMedPubMedCentralGoogle Scholar
  6. Asins MJ, Fernández-Ribacoba J, Bernet GP, Gadea J, Cambra M, Gorris MT et al (2012) The position of the major QTL for Citrus tristeza virus resistance is conserved among Citrus grandis, C. aurantium and Poncirus trifoliata. Mol Breed 29:575–587.  https://doi.org/10.1007/s11032-011-9574-xCrossRefGoogle Scholar
  7. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. In: Fay JC (ed) PLoS One 3:e3376.  https://doi.org/10.1371/journal.pone.0003376PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bajgain P, Rouse MN, Anderson JA (2016) Comparing genotyping-by-sequencing and single nucleotide polymorphism chip genotyping for quantitative trait loci mapping in Wheat. Crop Sci 56:232.  https://doi.org/10.2135/cropsci2015.06.0389CrossRefGoogle Scholar
  9. Balding DJ (2006) A tutorial on statistical methods for population association studies. Nat Rev Genet 7:781–791.  https://doi.org/10.1038/nrg1916CrossRefPubMedPubMedCentralGoogle Scholar
  10. Barkley NA, Roose ML, Krueger RR, Federici CT (2006) Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor Appl Genet 112:1519–1531.  https://doi.org/10.1007/s00122-006-0255-9PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bassene JB, Berti L, Costantino G, Carcouet E, Kamiri M, Tomi F et al (2009) Inheritance of characters involved in fruit quality in a citrus interspecific allotetraploid somatic hybrid. J Agric Food Chem 57:5065–5070.  https://doi.org/10.1021/jf803872fCrossRefPubMedPubMedCentralGoogle Scholar
  12. Bastianel M, Schwarz SF, Coleta Filho H Della, Lin LL, Machado M, Koller OC (1998) Identification of zygotic and nucellar tangerine seedlings (Citrus spp.) using RAPD. Genet Mol Biol 21:123–127.  https://doi.org/10.1590/s1415-47571998000100020CrossRefGoogle Scholar
  13. Bastianel M, de Oliveira AC, Cristofani M, Filho OG, Freitas-Astúa J, Rodrigues V et al (2006) Inheritance and heritability of resistance to citrus leprosis. Phytopathology 96:1092–1096.  https://doi.org/10.1094/phyto-96-1092PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bastianel M, Cristofani-Yaly M, de Oliveira AC, Freitas-Astúa J, Garcia AAF, Resende MDV et al (2009) Quantitative trait loci analysis of citrus leprosis resistance in an interspecific backcross family of (Citrus reticulata Blanco × C. sinensis L. Osbeck) × C. sinensis L. Osb. Euphytica 169:101–111.  https://doi.org/10.1007/s10681-009-9950-3CrossRefGoogle Scholar
  15. Batley J (eds) (2015) Plant genotyping—methods and protocols [Internet]. Springer New York, New York, NY.  https://doi.org/10.1007/978-1-4939-1966-6Google Scholar
  16. Batley J, Barker G, O’Sullivan H, Edwards KJ, Edwards D (2003) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol 132:84–91.  https://doi.org/10.1104/pp.102.019422.unlikeCrossRefPubMedPubMedCentralGoogle Scholar
  17. Bausher MG, Singh ND, Lee S-B, Jansen RK, Daniell H (2006) The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var “Ridge Pineapple”: organization and phylogenetic relationships to other angiosperms. BMC Plant Biol 6:21.  https://doi.org/10.1186/1471-2229-6-21PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bernet GP, Margaix C, Jacas J, Carbonell EA, Asins MJ (2005) Genetic analysis of citrus leafminer susceptibility. Theor Appl Genet 110:1393–1400.  https://doi.org/10.1007/s00122-005-1943-6CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bernet GP, Fernandez-Ribacoba J, Carbonell EA, Asins MJ (2010) Comparative genome-wide segregation analysis and map construction using a reciprocal cross design to facilitate citrus germplasm utilization. Mol Breed 25:659–673.  https://doi.org/10.1007/s11032-009-9363-yCrossRefGoogle Scholar
  20. Bink MCAM, Jansen J, Madduri M, Voorrips RE, Durel CE, Kouassi AB et al (2014) Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple. Theor Appl Genet 127:1073–1090.  https://doi.org/10.1007/s00122-014-2281-3CrossRefPubMedPubMedCentralGoogle Scholar
  21. Biswas MK, Xu Q, Deng X (2010) Utility of RAPD, ISSR, IRAP and REMAP markers for the genetic analysis of Citrus spp. Sci Hortic (Amsterdam) 124:254–261.  https://doi.org/10.1016/j.scienta.2009.12.013CrossRefGoogle Scholar
  22. Biswas MK, Chen P, Amar MH, Deng X (2015) Novel polymorphic EST-based microsatellite marker isolation and characterization from Poncirus trifoliata (Rutaceae). Front Agric Sci Eng 2:60.  https://doi.org/10.15302/J-FASE-2015048CrossRefGoogle Scholar
  23. Botha A-M, Venter E, van der Vyver C, Kunert KJ, Bornman CH (2004) Development and application of molecular DNA markers in Africa: a South African view. South African J Bot 70:152–166.  https://doi.org/10.1016/S0254-6299(15)30276-3CrossRefGoogle Scholar
  24. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedPubMedCentralGoogle Scholar
  25. Cai Q, Guy CL, Moore GA (1994) Extension of the linkage map in Citrus using random amplified polymorphic DNA (RAPD) markers and RFLP mapping of cold-acclimation-responsive loci. Theor Appl Genet 89:606–614.  https://doi.org/10.1007/BF00222455CrossRefPubMedPubMedCentralGoogle Scholar
  26. Carbonell-Caballero J, Alonso R, Ibañez V, Terol J, Talon M, Dopazo J (2015) A phylogenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus Citrus. Mol Biol Evol 32:2015–2035.  https://doi.org/10.1093/molbev/msv082CrossRefPubMedPubMedCentralGoogle Scholar
  27. Carlos de Oliveira A, Novac Garcia A, Cristofani M, Machado MA (2002) Identification of citrus hybrids through the combination of leaf apex morphology and SSR markers. Euphytica 128:397–403.  https://doi.org/10.1023/a:1021223309212CrossRefGoogle Scholar
  28. Carlos de Oliveira A, Bastianel M, Cristofani-Yaly M, Morais do Amaral A, Machado MA (2007) Development of genetic maps of the citrus varieties “Murcott” tangor and “Pera” sweet orange by using fluorescent AFLP markers. J Appl Genet 48:219–231. http://www.ncbi.nlm.nih.gov/pubmed/17666774CrossRefGoogle Scholar
  29. Chen C, Zhou P, Choi YA, Huang S, Gmitter FG (2006) Mining and characterizing microsatellites from citrus ESTs. Theor Appl Genet 112:1248–1257.  https://doi.org/10.1007/s00122-006-0226-1CrossRefPubMedPubMedCentralGoogle Scholar
  30. Chen C, Bowman KD, Choi YA, Dang PM, Rao MN, Huang S et al (2008) EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliata. Tree Genet Genomes 4:1–10.  https://doi.org/10.1007/s11295-007-0083-3CrossRefGoogle Scholar
  31. Chen C, Grosser JW, Ćalović M, Serrano P, Pasquali G, Gmitter J et al (2008) Verification of mandarin and pummelo somatic hybrids by expressed sequence tag—simple sequence repeat marker analysis 133:794–800Google Scholar
  32. Chen C, Lyon MT, O’Malley D, Federici CT, Gmitter J, Grosser JW et al (2008c) Origin and frequency of 2n gametes in Citrus sinensis × Poncirus trifoliata and their reciprocal crosses. Plant Sci 174:1–8.  https://doi.org/10.1016/j.plantsci.2007.08.005CrossRefGoogle Scholar
  33. Chen B, Cole JW, Grond-Ginsbach C (2017) Departure from Hardy Weinberg equilibrium and genotyping error. Front Genet 8:167.  https://doi.org/10.3389/fgene.2017.00167CrossRefPubMedPubMedCentralGoogle Scholar
  34. Cheng F, Roose M (1995) Origin and inheritance of dwarfing by the citrus rootstock Poncirus trifoliata “Flying Dragon.” J Am Soc Hortic Sci 120:286–291. http://journal.ashspublications.org/content/120/2/286.shortCrossRefGoogle Scholar
  35. Choi YA, Chen C, Huang S, Gmitter FGJ (2005) Quantitative trait linkage (QTL) mapping for resistance to citrus canker within Citrus. In: The 2nd international Canker/Huanlongbin workshop. Orland, FL, USA, p P10Google Scholar
  36. Close TJ, Wanamaker S, Roose ML, Lyon M (2007) HarvEST. Methods Mol Biol 406:161–177. http://www.ncbi.nlm.nih.gov/pubmed/18287692
  37. Cloutier S, Landry BS (1994) Molecular markers applied to plant tissue culture. Vitr Cell Dev Biol—Plant 30:32–39.  https://doi.org/10.1007/BF02632117CrossRefGoogle Scholar
  38. Coletta Filho HD, Machado MA, Targon MLPN, Moreira MCPQDG, Pompeu J Jr (1998) Analysis of the genetic diversity among mandarins (Citrus spp.) using RAPD markers. Euphytica 102:133–139.  https://doi.org/10.1023/a:1018300900275CrossRefGoogle Scholar
  39. Combrink NK, Labuschagne MT, Bijzet Z (2013) Variation of fruit size and shape in Kiyomi tangor families. Sci Hortic (Amsterdam). Elsevier B.V. 162:357–364.  https://doi.org/10.1016/j.scienta.2013.08.010CrossRefGoogle Scholar
  40. Combrink NK, Bijzet Z, Sippel AD, Booyse M, Labuschagne MT (2015) Genotypic variation of rind colour in citrus tangor Kiyomi families. Acta Hortic 1065:439–448.  https://doi.org/10.17660/actahortic.2015.1065.54
  41. Corazza-Nunes MJ, Machado MA, Nunes WMC, Cristofani M, Targon MLPN (2002) Assessment of genetic variability in grapefruits (Citrus paradisi Macf.) and pummelos (C. maxima (Burm.) Merr.) using RAPD and SSR markers. Euphytica 126:169–176.  https://doi.org/10.1023/a:1016332030738CrossRefGoogle Scholar
  42. Costa F (2015) MetaQTL analysis provides a compendium of genomic loci controlling fruit quality traits in apple. Tree Genet Genomes 11:1–11.  https://doi.org/10.1007/s11295-014-0819-9CrossRefGoogle Scholar
  43. Cristofani M, Machado MA, Grattapaglia D (1999) Genetic linkage maps of Citrus sunki Hort. ex. Tan. and Poncirus trifoliata (L.) Raf. and mapping of citrus tristeza virus resistance gene. Euphytica 109:25–32.  https://doi.org/10.1023/a:1003637116745CrossRefGoogle Scholar
  44. Cuenca J, Aleza P, Vicent A, Brunel D, Ollitrault P, Navarro L (2013) Genetically based location from triploid populations and gene ontology of a 3.3-Mb genome region linked to Alternaria brown spot resistance in citrus reveal clusters of resistance genes. PLoS One 8:1–18.  https://doi.org/10.1371/journal.pone.0076755PubMedPubMedCentralCrossRefGoogle Scholar
  45. Cuenca J, Aleza P, Garcia-Lor A, Ollitrault P, Navarro L (2016) Fine mapping for identification of citrus Alternaria brown spot candidate resistance genes and development of new SNP markers for marker-assisted selection. Front Plant Sci 7:1–13.  https://doi.org/10.3389/fpls.2016.01948CrossRefGoogle Scholar
  46. Curk F, Ancillo G, Ollitrault F, Perrier X, Jacquemoud-Collet JP, Garcia-Lor A et al (2015) Nuclear species-diagnostic SNP markers mined from 454 amplicon sequencing reveal admixture genomic structure of modern Citrus varieties. PLoS ONE 10:1–25.  https://doi.org/10.1371/journal.pone.0125628CrossRefGoogle Scholar
  47. Curk F, Ollitrault F, Garcia-Lor A, Luro F, Navarro L, Ollitrault P (2016) Phylogenetic origin of limes and lemons revealed by cytoplasmic and nuclear markers. Ann Bot 117:565–583.  https://doi.org/10.1093/aob/mcw005CrossRefPubMedPubMedCentralGoogle Scholar
  48. Curtolo M, Cristofani-Yaly M, Gazaffi R, Takita MA, Figueira A, Machado MA (2017) QTL mapping for fruit quality in Citrus using DArTseq markers. BMC Genom 18:289.  https://doi.org/10.1186/s12864-017-3629-2CrossRefGoogle Scholar
  49. Curtolo M, Soratto TAT, Gazaffi R, Takita MA, Machado MA, Cristofani-Yaly M (2018) High-density linkage maps for Citrus sunki and Poncirus trifoliata using DArTseq markers. Tree Genet Genomes 14.  https://doi.org/10.1007/s11295-017-1218-9
  50. Dalkilic Z, Timmer LW, Gmitter FG Jr (2005) Linkage of an Alternaria disease resistance gene in mandarin hybrids with RAPD fragments. J Am Soc Hortic Sci 130:191–195. isi:000227632500007CrossRefGoogle Scholar
  51. de Oliveira RP, Cristofani M, Machado MA (2005) Integrated genetic map of citrus based on RAPD markers. Fruits 60:187–193.  https://doi.org/10.1051/fruits:2005025CrossRefGoogle Scholar
  52. De Simone M, Russo MP, Puleo G, Marsan PA, Lorenzoni C, Marocco A et al (1998) Construction of genetic maps for Citrus aurantium and C. latipes based on AFLP, RAPD and RFLP markers. Fruits 53:383–390Google Scholar
  53. De Oliveira RP, Cristofani M, Machado MA (2004) Genetic linkage maps of “Pêra” sweet orange and “Cravo” mandarin with RAPD markers. Pesqui Agropecuária Bras 39:159–165.  https://doi.org/10.1590/S0100-204X2004000200009CrossRefGoogle Scholar
  54. Deng ZN, Gentile A, Nicolosi E, Domina F, Vardi A, Tribulato E (1995) Identification of in vivo and in vitro lemon mutants by RAPD markers. J Hortic Sci 70:117–125.  https://doi.org/10.1080/14620316.1995.11515281CrossRefGoogle Scholar
  55. Deng Z, Huang S, Xiao S, Gmitter FG (1997) Development and characterization of SCAR markers linked to the citrus tristeza virus resistance gene from Poncirus trifoliata. Genome 704:697–704CrossRefGoogle Scholar
  56. Deng Z, Huang S, Ling P, Yu C, Tao Q, Chen C et al (2001) Fine genetic mapping and BAC contig development for the citrus tristeza virus resistance gene locus in Poncirus trifoliata (Raf.). Mol Genet Genomics 265:739–747.  https://doi.org/10.1007/s004380100471PubMedCrossRefPubMedCentralGoogle Scholar
  57. Durham RE, Liou PC, Gmitter FG, Moore GA (1992) Linkage of restriction fragment length polymorphisms and isozymes in Citrus. Theor Appl Genet 84:39–48.  https://doi.org/10.1007/BF00223979CrossRefPubMedPubMedCentralGoogle Scholar
  58. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379.  https://doi.org/10.1371/journal.pone.0019379CrossRefPubMedPubMedCentralGoogle Scholar
  59. Fang DQ, Roose ML (1997) Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor Appl Genet 95:408–417.  https://doi.org/10.1007/s001220050577CrossRefGoogle Scholar
  60. Fang DQ, Federici CT, Roose ML (1997) Development of molecular markers linked to a gene controlling fruit acidity in citrus. Genome 40:841–849.  https://doi.org/10.1139/g97-809CrossRefPubMedPubMedCentralGoogle Scholar
  61. Fang D, Krueger RR, Roose ML (1998) Phylogenetic relationships among selected Citrus germplasm accessions revealed by inter-simple sequence repeat (ISSR) markers. J Am Soc Hortic Sci 123:612–617CrossRefGoogle Scholar
  62. Fang D, Federici C, Roose M (1998) A high-resolution linkage map of the citrus tristeza virus resistance gene region in Poncirus trifoliata (L.) Raf Genetics 150:883–890. http://www.genetics.org/content/150/2/883.short
  63. Federici CT, Fang DQ, Scora RW, Roose ML (1998) Phylogenetic relationships within the genus Citrus (Rutaceae) and related genera as revealed by RFLP and RAPD analysis. Theor Appl Genet 96:812–822.  https://doi.org/10.1007/s001220050807CrossRefGoogle Scholar
  64. Ferrante SP, Lucretti S, Reale S, De Patrizio A, Abbate L, Tusa N et al (2010) Assessment of the origin of new citrus tetraploid hybrids (2n = 4x) by means of SSR markers and PCR based dosage effects. Euphytica 173:223–233.  https://doi.org/10.1007/s10681-009-0093-3CrossRefGoogle Scholar
  65. Ferreira A, da Silva MF, Silva LDCE, Cruz CD (2006) Estimating the effects of population size and type on the accuracy of genetic maps. Genet Mol Biol 29:187–192.  https://doi.org/10.1590/S1415-47572006000100033CrossRefGoogle Scholar
  66. Freeman T, Robbertse PJ (2003) Internal quality of ‘Valencia’ orange fruit as influenced by tree fruit position and winter girdling. South African J Plant Soil 20:199–202.  https://doi.org/10.1080/02571862.2003.10634935CrossRefGoogle Scholar
  67. Froelicher Y, Bassene JB, Jedidi-Neji E, Dambier D, Morillon R, Bernardini G et al (2007) Induced parthenogenesis in mandarin for haploid production: induction procedures and genetic analysis of plantlets. Plant Cell Rep 26:937–944.  https://doi.org/10.1007/s00299-007-0314-yCrossRefPubMedPubMedCentralGoogle Scholar
  68. Froelicher Y, Dambier D, Bassene JB, Costantino G, Lotfy S, Didout C et al (2008) Characterization of microsatellite markers in mandarin orange (Citrus reticulata Blanco). Mol Ecol Resour 8:119–122.  https://doi.org/10.1111/j.1471-8286.2007.01893.xCrossRefPubMedPubMedCentralGoogle Scholar
  69. Fu Y-B, Cheng B, Peterson GW (2014) Genetic diversity analysis of yellow mustard (Sinapis alba L.) germplasm based on genotyping by sequencing. Genet Resour Crop Evol 61:579–594.  https://doi.org/10.1007/s10722-013-0058-1CrossRefGoogle Scholar
  70. Fujii H, Ogata T, Shimada T, Endo T, Iketani H, Shimizu T et al (2013) Minimal Marker: an algorithm and computer program for the identification of minimal sets of discriminating DNA markers for efficient variety identification. J Bioinform Comput Biol 11:1250022.  https://doi.org/10.1142/S0219720012500229CrossRefPubMedPubMedCentralGoogle Scholar
  71. García R, Asíns MJ, Forner J, Carbonell EA (1999) Genetic analysis of apomixis in Citrus and Poncirus by molecular markers. Theor Appl Genet 99:511–518.  https://doi.org/10.1007/s001220051264CrossRefPubMedPubMedCentralGoogle Scholar
  72. García MR, Asíns MJ, Carbonell EA (2000) QTL analysis of yield and seed number in Citrus. Theor Appl Genet 101:487–493.  https://doi.org/10.1007/s001220051507CrossRefGoogle Scholar
  73. Gmitter FG, Xiao SY, Huang S, Hu XL, Garnsey SM, Deng Z (1996) A localized linkage map of the citrus tristeza virus resistance gene region. Theor Appl Genet 92:688–695.  https://doi.org/10.1007/BF00226090CrossRefPubMedPubMedCentralGoogle Scholar
  74. Gmitter FG, Chen C, Machado MA, Souza AA, Ollitrault P, Froehlicher Y et al (2012) Citrus genomics. Tree Genet Genomes 8:611–626.  https://doi.org/10.1007/s11295-012-0499-2CrossRefGoogle Scholar
  75. Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473. http://www.genetics.org/content/155/1/463.short
  76. Gois IB, Borém A, Cristofani-Yaly M, De Resende MDV, Azevedo CF, Bastianel M et al (2016) Genome wide selection in citrus breeding. Genet Mol Res 15:1–14.  https://doi.org/10.4238/gmr15048863CrossRefGoogle Scholar
  77. Goodwin W, Linacre A, Hadi S (2011) An introduction to forensic genetics, vol 2. John Wiley & SonsGoogle Scholar
  78. Goto S, Yoshioka T, Ohta S, Kita M, Hamada H, Shimizu T (2016) Segregation and heritability of male sterility in populations derived from progeny of Satsuma mandarin. In: Fang DD (ed) PLoS One 11:e0162408.  https://doi.org/10.1371/journal.pone.0162408PubMedPubMedCentralCrossRefGoogle Scholar
  79. Goto S, Yoshioka T, Ohta S, Kita M, Hamada H, Shimizu T (2018) QTL mapping of male sterility and transmission pattern in progeny of Satsuma mandarin. PloS one 13(7)PubMedPubMedCentralCrossRefGoogle Scholar
  80. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137. http://www.genetics.org/content/137/4/1121.short
  81. Gregory TR (2004) Insertion-deletion biases and the evolution of genome size. Gene 324:15–34.  https://doi.org/10.1016/j.gene.2003.09.030CrossRefPubMedPubMedCentralGoogle Scholar
  82. Gulsen O, Uzun A, Canan I, Seday U, Canihos E (2010) A new citrus linkage map based on SRAP, SSR, ISSR, POGP, RGA and RAPD markers. Euphytica 173:265–277.  https://doi.org/10.1007/s10681-010-0146-7CrossRefGoogle Scholar
  83. Guo F, Yu H, Tang Z, Jiang X, Wang L, Wang X et al (2015) Construction of a SNP-based high-density genetic map for pummelo using RAD sequencing. Tree Genet Genomes 11:2.  https://doi.org/10.1007/s11295-014-0831-0CrossRefGoogle Scholar
  84. Hall D, Tegström C, Ingvarsson PK (2010) Using association mapping to dissect the genetic basis of complex traits in plants. Briefings Funct Genomics Proteomics 9:157–165.  https://doi.org/10.1093/bfgp/elp048CrossRefGoogle Scholar
  85. He J, Zhao X, Laroche A, Lu Z-X, Liu H, Li Z (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:1–8.  https://doi.org/10.3389/fpls.2014.00484CrossRefGoogle Scholar
  86. Holla KMS, Khan JA, Sowjanya MS, Shashidhar HE (2014) Monomorphic molecular markers are as informative as polymorphic molecular markers. Indian J Genet Plant Breed 74:596.  https://doi.org/10.5958/0975-6906.2014.00896.7CrossRefGoogle Scholar
  87. Hong Q, Gong G, Peng Z, Xiang S, Jiang D, Tiangang L (2008) A consensus map constructed with SSR and EST-SSR markers using progeny population from sweet orange tangor. In: Deng X, Xu J, Lin S (eds) Proceedings of the 11th International Society of Citriculture. China Agricultural Press, Wuhan, China, pp 1:284–288Google Scholar
  88. Hoskins R, Phan A, Naeemuddin M, Mapa F, Ruddy D, Ryan J et al (2001) Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster. Genome Res 11:1100–1113.  https://doi.org/10.1101/gr.178001.4CrossRefPubMedPubMedCentralGoogle Scholar
  89. Hussain W, Baenziger PS, Belamkar V, Guttieri MJ, Venegas JP, Easterly A et al (2017) Genotyping-by-Sequencing derived high-density linkage map and its application to QTL mapping of flag leaf traits in bread wheat. Sci Rep. Springer US 7:16394.  https://doi.org/10.1038/s41598-017-16006-z
  90. Imai A, Yoshioka T, Hayashi T (2017) Quantitative trait locus (QTL) analysis of fruit-quality traits for mandarin breeding in Japan. Tree Genet Genomes 13:79.  https://doi.org/10.1007/s11295-017-1162-8
  91. Imai A, Nonaka K, Kuniga T, Yoshioka T, Hayashi T (2018) Genome-wide association mapping of fruit-quality traits using genotyping-by-sequencing approach in citrus landraces, modern cultivars, and breeding lines in Japan. Tree Genet Genomes 14:24.  https://doi.org/10.1007/s11295-018-1238-0
  92. Iwata H, Minamikawa MF, Kajiya-Kanegae H, Ishimori M, Hayashi T (2016) Genomics-assisted breeding in fruit trees. Breed Sci 66:100–115.  https://doi.org/10.1270/jsbbs.66.100CrossRefPubMedPubMedCentralGoogle Scholar
  93. Jackson SA, Iwata A, Lee S-H, Schmutz J, Shoemaker R (2011) Sequencing crop genomes: approaches and applications. New Phytol 191:915–925.  https://doi.org/10.1111/j.1469-8137.2011.03804.xCrossRefPubMedPubMedCentralGoogle Scholar
  94. Jarrell DC, Roose ML, Traugh SN, Kupper RS (1992) A genetic map of citrus based on the segregation of isozymes and RFLPs in an intergeneric cross. Theor Appl Genet 84:49–56.  https://doi.org/10.1007/BF00223980CrossRefPubMedPubMedCentralGoogle Scholar
  95. Jiang D, Guang-Yan Z, Hong Q-B (2006) Analysis of microsatellites in Citrus unigenes. Acta Genet Sin 33:345–353.  https://doi.org/10.1016/S0379-4172(06)60060-7CrossRefPubMedPubMedCentralGoogle Scholar
  96. Jiang D, Ye Q, Wang F, Cao L (2010) The mining of citrus EST-SNP and its application in cultivar discrimination. Agric Sci China 9:179–190.  https://doi.org/10.1016/S1671-2927(09)60082-1CrossRefGoogle Scholar
  97. Jones AG, Ardren WR (2003) Methods of parentage analysis in natural populations. Mol Ecol 12:2511–2523.  https://doi.org/10.1046/j.1365-294X.2003.01928.xCrossRefPubMedPubMedCentralGoogle Scholar
  98. Kacar Y, Uzun A, Polat I, Yesiloglu T, Yilmaz B, Gulsen O et al (2013) Molecular characterization and genetic diversity analysis of mandarin genotypes by SSR and SRAP markers. J Food Agric Environ 11:516–521Google Scholar
  99. Kage U, Kumar A, Dhokane D, Karre S, Kushalappa AC (2016) Functional molecular markers for crop improvement. Crit Rev Biotechnol 36:917–930.  https://doi.org/10.3109/07388551.2015.1062743CrossRefPubMedPubMedCentralGoogle Scholar
  100. Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334.  https://doi.org/10.1007/s10681-010-0286-9CrossRefGoogle Scholar
  101. Kaminuma E, Fujisawa T, Tanizawa Y, Sakamoto N, Kurata N, Shimizu T et al (2013) H2DB: a heritability database across multiple species by annotating trait-associated genomic loci. Nucleic Acids Res 41:D880–D884.  https://doi.org/10.1093/nar/gks1216CrossRefPubMedPubMedCentralGoogle Scholar
  102. Kepiro JL, Roose ML (2007) Nucellar embryony. In: Khan IA (ed) Citrus genetics, breeding and biotechnology. CABI, CAB International, Nosworthy Way Wallingford, pp 141–149Google Scholar
  103. Kepiro JL, Roose ML (2009) AFLP markers closely linked to a major gene essential for nucellar embryony (apomixis) in Citrus maxima × Poncirus trifoliata. Tree Genet Genomes 6:1–11.  https://doi.org/10.1007/s11295-009-0223-zCrossRefGoogle Scholar
  104. Khalid S, Malik AU, Saleem BA, Khan AS, Khalid MS, Amin M (2012) Tree age and canopy position affect rind quality, fruit quality and rind nutrient content of “Kinnow” mandarin (Citrus nobilis Lour × Citrus deliciosa Tenora). Sci Hortic (Amsterdam). Elsevier B.V. 135:137–144.  https://doi.org/10.1016/j.scienta.2011.12.010CrossRefGoogle Scholar
  105. Kijas JM, Fowler JC, Thomas MR (1995) An evaluation of sequence tagged microsatellite site markers for genetic analysis within Citrus and related species. Genome 38:349–355. http://www.nrcresearchpress.com/doi/pdf/10.1139/g95-045PubMedCrossRefPubMedCentralGoogle Scholar
  106. Kijas JMH, Thomas MR, Fowler JCS, Roose ML (1997) Integration of trinucleotide microsatellites into a linkage map of Citrus. Theor Appl Genet 94:701–706.  https://doi.org/10.1007/s001220050468CrossRefGoogle Scholar
  107. Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H et al (2012) Diversity arrays technology: a generic genome profiling technology on open platforms. In: Bonin FP (ed) Data production and analysis in population genomics. Humana Press, Totowa, NJ, pp 67–89.  https://doi.org/10.1007/978-1-61779-870-2_5CrossRefGoogle Scholar
  108. Kolpakov R, Bana G, Kucherov G (2003) mreps: efficient and flexible detection of tandem repeats in DNA. Nucleic Acids Res 31:3672–3678.  https://doi.org/10.1093/nar/gkg617CrossRefPubMedPubMedCentralGoogle Scholar
  109. Kotoda N, Matsuo S, Honda I, Yano K, Shimizu T (2015) Isolation and functional analysis of two Gibberellin 20-oxidase genes from Satsuma mandarin (Citrus unshiu Marc.). Hortic J 85:128–140.  https://doi.org/10.2503/hortj.mi-085
  110. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461.  https://doi.org/10.1007/s001220100570CrossRefGoogle Scholar
  111. Liang G, Xiong G, Guo Q, He Q, Li X (2007) AFLP analysis and taxonomy of Citrus. Acta Hortic 760:137–142.  https://doi.org/10.17660/ActaHortic.2007.760.17
  112. Ling P, Yu C, Deng Z, Chen C, Huang S, Wendell MK et al (1999) Citrus genome mapping with AFLP markers. In: Plant and Animal Genome XIII Conference. San Diego, CA, USA, p P189Google Scholar
  113. Ling P, Duncan LW, Deng Z, Dunn D, Hu X, Huang S et al (2000) Inheritance of citrus nematode resistance and its linkage with molecular markers. Theor Appl Genet 100:1010–1017.  https://doi.org/10.1007/s001220051382CrossRefGoogle Scholar
  114. Liou P-C (1990) A molecular study of the citrus genome through restriction fragment length polymorphism and isozyme mapping [Internet]. The University of Florida. https://archive.org/details/molecularstudyof00liou
  115. Liou PC, Gmitter FG, Moore GA (1996) Characterization of the citrus genome through analysis of restriction fragment length polymorphism. Theor Appl Genet 92:425–435PubMedCrossRefPubMedCentralGoogle Scholar
  116. Liu SR, Li WY, Long D, Hu CG, Zhang JZ (2013) Development and characterization of genomic and expressed SSRs in citrus by genome-wide analysis. PLoS ONE 8:e75149.  https://doi.org/10.1371/journal.pone.0075149CrossRefPubMedPubMedCentralGoogle Scholar
  117. Luro F, Laigret F, Bové JM, Ollitrault P (1994) Application of random amplified polymorphic DNA (R.A.P.D.) to Citrus genetics and taxonomy. In: Tribulato E, Gentile A (eds) Proceedings of the 7th International Citrus Congress 1:225–228. http://agritrop.cirad.fr/464648/
  118. Luro F, Laigret F, Bove JM, Ollitrault P (1995) DNA amplified fingerprinting, a useful tool for determination of genetic origin and diversity analysis in Citrus. HortScience 30:1063–1067CrossRefGoogle Scholar
  119. Luro F, Laigret F, Lorieux M, Ollitrault P (1996) Citrus genome mapping with molecular markers: two maps obtained by segregation analysis of progeny of one intergeneric cross. In: International Citrus Congress, vol 2. Sun City, South Africa, pp 862–866. http://agritrop.cirad.fr/390226/
  120. Luro F, Rist D, Ollitrault P (2001) Evaluation of genetic relationships in citrus genus by means of sequence tagged microsatellites. Acta Hortic 237–242.  https://doi.org/10.17660/actahortic.2001.546.27
  121. Luro F, Maddy F, Jacquemond C, Froelicher Y, Morillon R, Rist D et al (2004) Identification and evaluation of diplogyny in Clementine (Citrus clementina) for use in breeding. Acta Hortic 841–848.  https://doi.org/10.17660/actahortic.2004.663.152
  122. Luro F, Costantino G, Billot C, Froelicher Y, Morillon R, Ollitrault P et al (2007) Genetic maps of clementine mandarin and intergeneric hybrid clementine X poncirus using genomic and EST microsatellite markers. In: Plant and Animal Genomes XVth. San Diego, CA, USA, p 487. http://www.intl-pag.org/15/abstracts/PAG15_Late_487.html
  123. Luro FL, Costantino G, Terol J, Argout X, Allario T, Wincker P et al (2008) Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other Citrus species and their effectiveness for genetic mapping. BMC Genomics 9:287 [pii].  https://doi.org/10.1186/1471-2164-9-287PubMedPubMedCentralCrossRefGoogle Scholar
  124. Lyon MP (2008) A genomic genetic map of the common sweet orange and Poncirus trifoliata. Ph.D. thesis, University of California, Riverside [Internet]. http://www.worldcat.org/title/genomic-genetic-map-of-the-common-sweet-orange-and-poncirus-trifoliata/oclc/269016514
  125. Lyon MT, Federici CT, Kacar Y, Chen C, O’Malley D, Chaparro JX et al (2007) SSR-based linkage maps for sweet orange and trifoliate orange. In: Plant and Animal Genomes XIV, p 480Google Scholar
  126. Ma X, Gong G, Peng Z, Xue ZH, Hong Q (2012) Development of SSR markers from citrus BAC end sequences and their integration into linkage map. Acta Bot Boreali-Occidentalia Sin 32: 1112–1117Google Scholar
  127. Machado MA, Coletta Filho HD, Targon MLPN, Pompeu J (1996) Genetic relationship of Mediterranean mandarins (Citrus deliciosa Tenore) using RAPD markers. Euphytica 92:321–326. http://dx.doi.org/10.1007/BF00037115CrossRefGoogle Scholar
  128. Machado MA, Cristofani M, Amaral AM Do, de Oliveira AC (2005) Genética, melhoramento e biotecnologia de citros. In: De Mattos Júnior D, De Negri JD, Pio RM, Pompeu Júnior J (eds) Citros. Campinas, IAC, Fundag, pp 221–277Google Scholar
  129. Machado MA, Cristofani-Yaly M, Bastianel M (2011) Breeding, genetic and genomic of citrus for disease resistance. Rev Bras Frutic 33:158–172.  https://doi.org/10.1590/S0100-29452011000500019CrossRefGoogle Scholar
  130. Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S (2012) SNP markers and their impact on plant breeding. Int J Plant Genomics 2012:1–11.  https://doi.org/10.1155/2012/728398CrossRefGoogle Scholar
  131. Marak CK, Laskar MA (2010) Analysis of phenetic relationship between Citrus indica Tanaka and a few commercially important citrus species by ISSR markers. Sci Hortic (Amsterdam). Elsevier B.V. 124:345–348.  https://doi.org/10.1016/j.scienta.2010.01.014CrossRefGoogle Scholar
  132. Meuwissen T (2003) Genomic selection: the future of marker assisted selection and animal breeding. In: Lanteri S (ed) Marker assisted selection: a fast track to increase genetic gain in plant and animal breeding? Electronic forum on biotechnology in food and agriculture, pp 54–59Google Scholar
  133. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829. http://www.genetics.org/content/157/4/1819.abstract
  134. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U S A. 88:9828–9832. http://www.ncbi.nlm.nih.gov/pubmed/1682921CrossRefGoogle Scholar
  135. Minamikawa MF, Nonaka K, Kaminuma E, Kajiya-Kanegae H, Onogi A, Goto S et al (2017) Genome-wide association study and genomic prediction in citrus: potential of genomics-assisted breeding for fruit quality traits. Sci Rep. Springer US 7:4721.  https://doi.org/10.1038/s41598-017-05100-x
  136. Miyazaki T, Plotto A, Goodner K, Gmitter FG (2011) Distribution of aroma volatile compounds in tangerine hybrids and proposed inheritance. J Sci Food Agric 91:449–460.  https://doi.org/10.1002/jsfa.4205CrossRefPubMedPubMedCentralGoogle Scholar
  137. Miyazaki T, Plotto A, Baldwin EA, Reyes-De-Corcuera JI, Gmitter FG (2012) Aroma characterization of tangerine hybrids by gas-chromatography-olfactometry and sensory evaluation. J Sci Food Agric 92:727–735.  https://doi.org/10.1002/jsfa.4663CrossRefGoogle Scholar
  138. Nageswara Rao M, Soneji JR, Chen C, Huang S, Gmitter FG (2007) Characterization of zygotic and nucellar seedlings from sour orange-like citrus rootstock candidates using RAPD and EST-SSR markers. Tree Genet Genomes 4:113–124.  https://doi.org/10.1007/s11295-007-0092-2CrossRefGoogle Scholar
  139. Nakano M, Shimizu T, Kuniga T, Nesumi H, Omura M (2008) Mapping and haplotyping of the flanking region of the polyembryony locus in Citrus unshiu Marcow. J Japanese Soc Hortic Sci 77:109–114.  https://doi.org/10.2503/jjshs1.77.109CrossRefGoogle Scholar
  140. Nakano M, Shimada T, Endo T, Fujii H, Nesumi H, Kita M et al (2012) Characterization of genomic sequence showing strong association with polyembryony among diverse Citrus species and cultivars, and its synteny with Vitis and Populus. Plant Sci 183:131–142.  https://doi.org/10.1016/j.plantsci.2011.08.002CrossRefPubMedPubMedCentralGoogle Scholar
  141. Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N et al (2002) Search for and analysis of single nucleotide polymorphisms (SNPs) in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers. DNA Res 9:163–171.  https://doi.org/10.1093/dnares/9.5.163CrossRefPubMedPubMedCentralGoogle Scholar
  142. Nicolosi E, Deng ZN, Gentile A, La Malfa S, Continella G, Tribulato E (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166.  https://doi.org/10.1007/s001220051419CrossRefGoogle Scholar
  143. Novelli VM, Takita MA, Machado MA (2004) Identification and analysis of single nucleotide polymorphisms (SNPs) in citrus. Euphytica 138:227–237.  https://doi.org/10.1023/B:EUPH.0000047086.47988.82CrossRefGoogle Scholar
  144. Novelli VM, Cristofani M, Souza AA, Machado MA (2006) Development and characterization of polymorphic microsatellite markers for the sweet orange (Citrus sinensis L. Osbeck). Genet Mol Biol 29:90–96.  https://doi.org/10.1590/s1415-47572006000100018CrossRefGoogle Scholar
  145. Oddou-Muratorio S, Vendramin GG, Buiteveld J, Fady B (2009) Population estimators or progeny tests: what is the best method to assess null allele frequencies at SSR loci? Conserv Genet 10:1343–1347.  https://doi.org/10.1007/s10592-008-9648-4CrossRefGoogle Scholar
  146. Ohta S, Yano K, Kurita Y, Kita M, Shimizu T, Nesumi H (2013) A sample preparation method for direct and non-direct PCR in woody plants. J Japanese Soc Hortic Sci 82:14–21.  https://doi.org/10.2503/jjshs1.82.14CrossRefGoogle Scholar
  147. Ohta S, Endo T, Shimada T, Fujii H, Shimizu T, Kita M et al (2015) Construction of genetic linkage map and graphical genotyping of pseudo-backcrossed F2 (BC ’2) progeny to introduce a CTV resistance from Poncirus trifoliata (L.) Raf. into Citrus by introgression breeding. Tree Genet Genomes 11:797.  https://doi.org/10.1007/s11295-014-0797-y
  148. Ollitrault P, Lotfy S, Costantino G, T. Federici C, Mu L, Chen C et al (2008) International effort toward a SSR-based linkage map for C. clementina [Internet]. In: 11th International Citrus Congress, International Society of Citriculture. Wuhan, China. http://agritrop.cirad.fr/548797/
  149. Ollitrault F, Terol J, Pina JA, Navarro L, Talon M, Ollitrault P (2010) Development of SSR markers from Citrus clementina (Rutaceae) BAC end sequences and interspecific transferability in Citrus. Am J Bot 97:e124–e129.  https://doi.org/10.3732/ajb.1000280CrossRefPubMedPubMedCentralGoogle Scholar
  150. Ollitrault P, Terol J, Chen C, Federici CT, Lotfy S, Hippolyte I et al (2012a) A reference genetic map of C. clementina hort. ex Tan.; citrus evolution inferences from comparative mapping. BMC Genom 13:593.  https://doi.org/10.1186/1471-2164-13-593PubMedPubMedCentralCrossRefGoogle Scholar
  151. Ollitrault P, Terol J, Garcia-Lor A, Bérard A, Chauveau A, Froelicher Y et al (2012b) SNP mining in C. clementina BAC end sequences; transferability in the Citrus genus (Rutaceae), phylogenetic inferences and perspectives for genetic mapping. BMC Genomics 13:13.  https://doi.org/10.1186/1471-2164-13-13PubMedPubMedCentralCrossRefGoogle Scholar
  152. Omura M, Shimada T (2016) Citrus breeding, genetics and genomics in Japan. Breed Sci 66:3–17.  https://doi.org/10.1270/jsbbs.66.3CrossRefPubMedPubMedCentralGoogle Scholar
  153. Omura M, Ueda T, Kita M, Komatsu A, Takanokura Y, Shimada T et al (2000) EST mapping of Citrus. In: Davies FS (ed) Proceedings of the International Society of Citriculture. Orland, FL, USA, pp 71–74Google Scholar
  154. Oraguzie NC, Rikkerink EHA, Gardiner SE, De Silva HN (2007) Association mapping in plants [Internet]. In: Oraguzie NC, Rikkerink EHA, Gardiner SE, De Silva HN (eds). Springer New York, New York, NY.  https://doi.org/10.1007/978-0-387-36011-9Google Scholar
  155. Palmieri DA, Novelli VM, Bastianel M, Cristofani-Yaly M, Astúa-Monge G, Carlos EF et al (2007) Frequency and distribution of microsatellites from ESTs of citrus. Genet Mol Biol 30:1009–1018.  https://doi.org/10.1590/S1415-47572007000500029CrossRefGoogle Scholar
  156. Pang XM, Hu CG, Deng XX (2007) Phylogenetic relationships within Citrus and its related genera as inferred from AFLP markers. Genet Resour Crop Evol 54:429–436.  https://doi.org/10.1007/s10722-006-0005-5CrossRefGoogle Scholar
  157. Parida SK, Kalia SK, Kaul S, Dalal V, Hemaprabha G, Selvi A et al (2009) Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theor Appl Genet 118:327–338.  https://doi.org/10.1007/s00122-008-0902-4CrossRefPubMedPubMedCentralGoogle Scholar
  158. Pessina D, Gentili R, Barcaccia G, Nicolè S, Rossi G, Barbesti S et al (2011) DNA content, morphometric and molecular marker analyses of Citrus limonimedica, C. limon and C. medica for the determination of their variability and genetic relationships within the genus Citrus. Sci Hortic (Amsterdam). Elsevier B.V. 129:663–673.  https://doi.org/10.1016/j.scienta.2011.05.012CrossRefGoogle Scholar
  159. Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome J 5:92.  https://doi.org/10.3835/plantgenome2012.05.0005CrossRefGoogle Scholar
  160. Polat I, Kacar YA, Yesiloglu T, Uzun A, Tuzcu O, Gulsen O et al (2012) Molecular characterization of sour orange (Citrus aurantium) accessions and their relatives using SSR and SRAP markers. Genet Mol Res 11:3267–3276. http://dx.doi.org/10.4238/2012.September.12.10PubMedCrossRefPubMedCentralGoogle Scholar
  161. Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:846–847.  https://doi.org/10.1038/nrg1707PubMedCrossRefPubMedCentralGoogle Scholar
  162. Raga V, Bernet GP, Carbonell EA, Asins MJ (2012) Segregation and linkage analyses in two complex populations derived from the citrus rootstock Cleopatra mandarin. Inheritance of seed reproductive traits. Tree Genet Genomes 8:1061–1071.  https://doi.org/10.1007/s11295-012-0486-7CrossRefGoogle Scholar
  163. Rai M (2006) Refinement of the Citrus tristeza virus resistance gene (Ctv) positional map in Poncirus trifoliata and generation of transgenic grapefruit (Citrus paradisi) plant lines with candidate resistance genes in this region. Plant Mol Biol 61:399–414.  https://doi.org/10.1007/s11103-006-0018-7CrossRefPubMedGoogle Scholar
  164. Raman H, Raman R, Kilian A, Detering F, Carling J, Coombes N et al (2014) Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS One 9.  https://doi.org/10.1371/journal.pone.0101673PubMedPubMedCentralCrossRefGoogle Scholar
  165. Rauf S, Iqbal Z, Shahzad M (2013) Genetic improvement of Citrus for disease resistance. Arch Phytopathol Plant Prot 46:2051–2061.  https://doi.org/10.1080/03235408.2013.783982CrossRefGoogle Scholar
  166. Roose ML, Feng D, Cheng FS, Tayyar RI, Federici CT, Kupper RS (2000) Mapping the Citrus genome. Acta Hortic 25–32.  https://doi.org/10.17660/actahortic.2000.535.1
  167. Rouseff R, Gmitter F, Grosser J (1994) Citrus breeding and flavour. In: Piggott JR, Paterson A (eds) Understanding natural flavors. Springer US, pp 113–127.  https://doi.org/10.1007/978-1-4615-2143-3Google Scholar
  168. Ruiz C, Asins M (2003) Comparison between Poncirus and Citrus genetic linkage maps. Theor Appl Genet 106:826–836.  https://doi.org/10.1007/s00122-002-1095-xCrossRefPubMedPubMedCentralGoogle Scholar
  169. Ruiz C, Breto MP, Asíns MJ (2000) A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers. Euphytica 112:89–94.  https://doi.org/10.1023/A:1003992719598CrossRefGoogle Scholar
  170. Salazar JA, Pacheco I, Shinya P, Zapata P, Silva C, Aradhya M et al (2017) Genotyping by sequencing for SNP-based linkage analysis and identification of QTLs linked to fruit quality traits in Japanese plum (Prunus salicina Lindl.). Front Plant Sci 8:476.  https://doi.org/10.3389/fpls.2017.00476
  171. Sankar AA, Moore GA (2001) Evaluation of inter-simple sequence repeat analysis for mapping in Citrus and extension of the genetic linkage map. Theor Appl Genet 102:206–214.  https://doi.org/10.1007/s001220051637CrossRefGoogle Scholar
  172. Sansaloni C, Petroli C, Jaccoud D, Carling J, Detering F, Grattapaglia D et al (2011) Diversity Arrays Technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proc 5:P54.  https://doi.org/10.1186/1753-6561-5-S7-P54CrossRefPubMedCentralGoogle Scholar
  173. Schlötterer C (2004) Opinion: the evolution of molecular markers—just a matter of fashion? Nat Rev Genet 5:63–69.  https://doi.org/10.1038/nrg1249CrossRefPubMedPubMedCentralGoogle Scholar
  174. Shahsavar A, Izadpanah K, Tafazoli E, Tabatabaei BES (2007) Characterization of citrus germplasm including unknown variants by inter-simple sequence repeat (ISSR) markers. Sci Hortic (Amsterdam) 112:310–314.  https://doi.org/10.1016/j.scienta.2006.12.039CrossRefGoogle Scholar
  175. Shan X, Blake TK, Talbert LE (1999) Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor Appl Genet 98:1072–1078.  https://doi.org/10.1007/s001220051169CrossRefGoogle Scholar
  176. Shimada T, Fujii H, Endo T, Ueda T, Sugiyama A, Nakano M et al (2014) Construction of a citrus framework genetic map anchored by 708 gene-based markers. Tree Genet Genomes 10:1001–1013.  https://doi.org/10.1007/s11295-014-0738-9CrossRefGoogle Scholar
  177. Shimizu T, Kitajima A, Nonaka K, Yoshioka T, Ohta S, Goto S et al (2016a) Hybrid origins of citrus varieties inferred from DNA marker analysis of nuclear and organelle genomes. PLoS ONE 11:e0166969.  https://doi.org/10.1371/journal.pone.0166969CrossRefPubMedPubMedCentralGoogle Scholar
  178. Shimizu T, Kaminuma E, Nonaka K, Yoshioka T, Goto S, Matsumoto T et al (2016b) A genomic approach to selecting robust and versatile SNP sets from next-generation sequencing data for genome-wide association study in citrus cultivars. Acta Hortic 1135:23–32.  https://doi.org/10.17660/actahortic.2016.1135.4
  179. Shimizu T, Tanizawa Y, Mochizuki T, Nagasaki H, Yoshioka T, Toyoda A et al (2017) Draft sequencing of the heterozygous diploid genome of Satsuma (Citrus unshiu Marc.) using a hybrid assembly approach. Front Genet 8:180.  https://doi.org/10.3389/fgene.2017.00180
  180. Siviero A, Cristofani M, Furtado EL, Garcia AAF, Coelho ASG, Machado MA (2006) Identification of QTLs associated with citrus resistance to Phytophthora gummosis. J Appl Genet 47:23–28.  https://doi.org/10.1007/BF03194595CrossRefPubMedPubMedCentralGoogle Scholar
  181. Soto-Cerda BJ, Cloutier S (2012) Association mapping in plant genomes. In: Caliskan M (ed) Genetic diversity in plants. InTech Europe, Rijeka, Croatia, pp 29–54.  https://doi.org/10.5772/33005Google Scholar
  182. Spaniolas S, May ST, Bennett MJ, Tucker GA (2006) Authentication of coffee by means of PCR-RFLP analysis and Lab-on-a-chip capillary electrophoresis. J Agric Food Chem 54:7466–7470.  https://doi.org/10.1021/jf061164nCrossRefPubMedPubMedCentralGoogle Scholar
  183. Sugiyama A, Ikoma Y, Fujii H, Shimada T, Endo T, Shimizu T et al (2010) Structure and expression levels of alleles of Citrus zeaxanthin epoxidase genes. J Japanese Soc Hortic Sci 79:263–274.  https://doi.org/10.2503/jjshs1.79.263CrossRefGoogle Scholar
  184. Sugiyama A, Omura M, Shimada T, Fujii H, Endo T, Shimizu T et al (2014) Expression quantitative trait loci analysis of carotenoid metabolism-related genes in citrus. J Japanese Soc Hortic Sci 83:32–43.  https://doi.org/10.2503/jjshs1.CH-054CrossRefGoogle Scholar
  185. Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471.  https://doi.org/10.1093/nar/17.16.6463CrossRefPubMedPubMedCentralGoogle Scholar
  186. Terol J, Conesa A, Colmenero JM, Cercos M, Tadeo F, Agustí J et al (2007) Analysis of 13000 unique citrus clusters associated with fruit quality, production and salinity tolerance. BMC Genom 8:31.  https://doi.org/10.1186/1471-2164-8-31CrossRefGoogle Scholar
  187. Terol J, Naranjo MA, Ollitrault P, Talon M (2008) Development of genomic resources for Citrus clementina: characterization of three deep-coverage BAC libraries and analysis of 46,000 BAC end sequences. BMC Genet 9:423.  https://doi.org/10.1186/1471-2164-9-423CrossRefGoogle Scholar
  188. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289.  https://doi.org/10.1038/90135CrossRefPubMedPubMedCentralGoogle Scholar
  189. Thudi M, Bohra A, Nayak SN, Varghese N, Shah TM, Penmetsa RV et al (2011) Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1,291 marker loci for Chickpea (Cicer arietinum L.). In: Hansson B (ed) PLoS One 6: e27275.  https://doi.org/10.1371/journal.pone.0027275PubMedPubMedCentralCrossRefGoogle Scholar
  190. Torres AM, Mau-Lastovicka T, Williams TE, Soost RK (1985) Segregation distortion and linkage of Citrus and Poncirus isozyme genes. J Hered 76:289–294.  https://doi.org/10.1093/oxfordjournals.jhered.a110094CrossRefGoogle Scholar
  191. Tozlu I, Guy CL, Moore GA (1999a) QTL analysis of morphological traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and non-saline environments. Genome 42:1020–1029.  https://doi.org/10.1139/g99-035CrossRefGoogle Scholar
  192. Tozlu I, Guy CL, Moore GA (1999b) QTL analysis of Na + and Cl- accumulation related traits in an intergeneric BC1 progeny of Citrus and Poncirus under saline and nonsaline environments. Genome 42:692–705.  https://doi.org/10.1139/g99-003CrossRefGoogle Scholar
  193. Uddin MS, Cheng Q (2015). Recent application of biotechniques for the improvement of mango research. In: Applied plant genomics and biotechnology. Woodhead Publishing, Oxford, pp 195–212.  https://doi.org/10.1016/b978-0-08-100068-7.00012-4CrossRefGoogle Scholar
  194. Ueno I, Iwamasa M, Nishiura M (1967) Embryo number of various varieties of Citrus and it’s relatives. Bull Hort Res Sta Japan, Ser B 7:11–21Google Scholar
  195. Utsuno H, Minaguchi K (2004) Influence of template DNA degradation on the genotyping of SNPs and STR polymorphisms from forensic materials by PCR. Bull Tokyo Dent Coll 45:33–46. http://www.ncbi.nlm.nih.gov/pubmed/15346882PubMedCrossRefPubMedCentralGoogle Scholar
  196. Uzun A, Yesiloglu T, Aka-Kacar Y, Tuzcu O, Gulsen O (2009a) Genetic diversity and relationships within Citrus and related genera based on sequence related amplified polymorphism markers (SRAPs). Sci Hortic (Amsterdam) 121:306–312.  https://doi.org/10.1016/j.scienta.2009.02.018CrossRefGoogle Scholar
  197. Uzun A, Gulsen O, Kafa G, Seday U (2009b) Field performance and molecular diversification of lemon selections. Sci Hortic (Amsterdam) 120:473–478.  https://doi.org/10.1016/j.scienta.2008.12.003CrossRefGoogle Scholar
  198. Uzun A, Gulsen O, Yesiloglu T, Aka-Kacar Y, Tuzcu O (2010) Distinguishing grapefruit and pummelo accessions using ISSR markers. Czech J Genet Plant Breed 46:170–177CrossRefGoogle Scholar
  199. van Nocker S, Gardiner SE (2014) Breeding better cultivars, faster: applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic Res 1:14022.  https://doi.org/10.1038/hortres.2014.22CrossRefPubMedPubMedCentralGoogle Scholar
  200. Varshney A, Mohapatra T, Sharma RP (2004) Molecular mapping and marker assisted selection of traits for crop improvement. In: Srivastava PS, Narula A, Srivastava S (eds) Plant biotechnology and molecular markers. Springer Netherlands, Dordrecht, pp 289–330.  https://doi.org/10.1007/1-4020-3213-7_20
  201. Verreynne JS, Rabe E, Theron KI (2004) Effect of bearing position on fruit quality of mandarin types. South African J Plant Soil 21:1–7.  https://doi.org/10.1080/02571862.2004.10635014CrossRefGoogle Scholar
  202. Veyrieras J-B, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinform 8:49.  https://doi.org/10.1186/1471-2105-8-49CrossRefGoogle Scholar
  203. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414.  https://doi.org/10.1093/nar/23.21.4407CrossRefPubMedPubMedCentralGoogle Scholar
  204. Wang X, Xu Y, Zhang S, Cao L, Huang Y, Cheng J et al (2017) Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat Genet 49:765–772.  https://doi.org/10.1038/ng.3839CrossRefPubMedPubMedCentralGoogle Scholar
  205. Weber CA, Moore GA, Deng Z, Gmitter FG (2003) Mapping freeze tolerance quantitative trait loci in a Citrus grandis x Poncirus trifoliata F-1 pseudo-testcross using molecular markers. J Am Soc Hortic Sci 128:508–514CrossRefGoogle Scholar
  206. Williams LM, Ma X, Boyko AR, Bustamante CD, Oleksiak MF (2010) SNP identification, verification, and utility for population genetics in a non-model genus. BMC Genet 11:32.  https://doi.org/10.1186/1471-2156-11-32CrossRefPubMedPubMedCentralGoogle Scholar
  207. Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F et al (2014) Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved 32:656–662.  https://doi.org/10.1038/nbt.2906PubMedPubMedCentralCrossRefGoogle Scholar
  208. Xiong M, Jin L (1999) Comparison of the power and accuracy of biallelic and microsatellite markers in population-based gene-mapping methods. Am J Hum Genet 64:629–640.  https://doi.org/10.1086/302231CrossRefPubMedPubMedCentralGoogle Scholar
  209. Xu Q, Chen L-L, Ruan X, Chen D, Zhu A, Chen C et al (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet. Nature Publishing Group 45:59–66.  https://doi.org/10.1038/ng.2472CrossRefGoogle Scholar
  210. Yang Z, Ye X, Molina J, Roose ML, Mirkov TE (2003) Sequence analysis of a 282-kilobase region surrounding the citrus Tristeza virus resistance gene (Ctv) locus in Poncirus trifoliata L. Raf. Plant Physiol 131:482–492.  https://doi.org/10.1104/pp.011262CrossRefPubMedPubMedCentralGoogle Scholar
  211. Yang X, Li H, Liang M, Xu Q, Chai L, Deng X (2015) Genetic diversity and phylogenetic relationships of citron (Citrus medica L.) and its relatives in southwest China. Tree Genet Genomes 11:129.  https://doi.org/10.1007/s11295-015-0955-x
  212. Yu Y, Chen C, Gmitter FG (2016) QTL mapping of mandarin (Citrus reticulata) fruit characters using high-throughput SNP markers. Tree Genet Genomes 12:77.  https://doi.org/10.1007/s11295-016-1034-7
  213. Yu Y, Bai J, Chen C, Plotto A, Yu Q, Baldwin EA et al (2017) Identification of QTLs controlling aroma volatiles using a ‘Fortune’ x ‘Murcott’ (Citrus reticulata) population. BMC Genom 18:646.  https://doi.org/10.1186/s12864-017-4043-5CrossRefGoogle Scholar
  214. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16.  https://doi.org/10.1046/j.0962-1083.2001.01418.xCrossRefPubMedPubMedCentralGoogle Scholar
  215. Zhang Z, Gerstein M (2003) Patterns of nucleotide substitution, insertion and deletion in the human genome inferred from pseudogenes. Nucleic Acids Res 31:5338–5348. http://www.ncbi.nlm.nih.gov/pubmed/12954770PubMedPubMedCentralCrossRefGoogle Scholar
  216. Zhang H, Xie Y, Liu C, Chen S, Hu S, Xie Z et al (2017) Comprehensive comparative analysis of volatile compounds in citrus fruits of different species. Food Chem 230:316–326.  https://doi.org/10.1016/j.foodchem.2017.03.040CrossRefGoogle Scholar
  217. Zhou G, Jian J, Wang P, Li C, Tao Y, Li X et al (2008) Construction of an ultra-high density consensus genetic map, and enhancement of the physical map from genome sequencing in Lupinus angustifolius. Theor Appl Genet. Springer Berlin Heidelberg 131:209–223.  https://doi.org/10.1007/s00122-017-2997-yPubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Tokurou Shimizu
    • 1
    Email author
  • Yıldız Aka Kacar
    • 2
  • Mariângela Cristofani-Yaly
    • 3
  • Maiara Curtolo
    • 3
  • Marcos Antonio Machado
    • 3
  1. 1.Citrus Research DivisionInstitute of Fruit Tree and Tea Science, NAROTsukubaJapan
  2. 2.Horticulture Department, Faculty of AgricultureUniversity of ÇukurovaAdanaTurkey
  3. 3.Citrus Center Sylvio Moreira, Agronomic Institute (IAC)CordeirópolisBrazil

Personalised recommendations