Advertisement

Molecular Mechanisms for Resistance to Biotic Stresses

  • Vittoria CataraEmail author
  • Dai Suming
  • Panagiotis F. Sarris
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Diverse pathogens including viruses, viroids, fungi, and bacteria are responsible of diseases on Citrus. Some of them in addition represent a treath to Citrus industry in some specific areas, others are either worldwide spread or have a restricted distribution. Breeding program searching for resistance to a given pathogen must take into consideration the nature of the interaction being studied. In addition a large number of data generated by sequencing projects will contribute to the identification of individual genes or groups of genes potentially associated with resistance to biotic and abiotic factors. This chapter introduce the molecular basis of plant resistance to innate immune response elicited by non-specific elicitors and how successful pathogens have evolved to evade them or trigger them later in the infection so that they become infective. The other paragraphs are dedicated to illustrating three important disease model studies caused by a fungus (Alternaria brown rot), an oomycete (Phythophthora root rot) and a virus (Citrus Tristeza).

References

  1. Andolfo G, Jupe F, Witek K, Etherington GJ, Ercolano MR, Jones JDG (2014) Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq. BMC Plant Biol 14:1–12PubMedPubMedCentralCrossRefGoogle Scholar
  2. Barrett HC, Rhodes AM (1976) A numerical taxonomic study of affinity relationships in cultivated citrus and its close relatives. Syst Bot 1:105–136CrossRefGoogle Scholar
  3. Bernet GP, Breto MP, Asins MJ (2004) Expressed sequence enrichment for candidate gene analysis of Citrus Tristeza Virus resistance. Theor Appl Genet 108:592–602PubMedCrossRefPubMedCentralGoogle Scholar
  4. Bernet GP, Gorris MT, Carbonell EA, Cambra M, Asins MJ (2008) Citrus tristeza virus resistance in a core collection of sour orange based on a diversity study of three germplasm collections using QTL-linked markers. Plant Breed 127:398–406CrossRefGoogle Scholar
  5. Birker DHK, Takahara H, Narusaka M, Deslandes L, Narusaka Y, Reymond M, Parker JE, O’Connell R (2009, Nov) A locus conferring resistance to Colletotrichum higginsianum is shared by four geographically distinct Arabidopsis accessions. Plant J 60(4):602–613Google Scholar
  6. Boava LP, Cristofani-Yaly M, Mafra VS et al (2011a) Global gene expression of Poncirus trifoliata, Citrus sunki and their hybrids under infection of Phytophthora parasitica. BMC Genom 12:39CrossRefGoogle Scholar
  7. Boava LP, Cristofani-Yaly M, Stuart RM, Machado MA (2011b) Expression of defense-related genes in response to mechanical wounding and Phytophthora parasitica infection in Poncirus trifoliata and Citrus sunki. Physiol Mol Plant Pathol 76:119–125CrossRefGoogle Scholar
  8. Bowman KD, Rouse RE (2006) US-812 citrus rootstock. HortScience 41:832–836CrossRefGoogle Scholar
  9. Broadbent, P, Bevington, KB, Coote BG (1991) Control of stem pitting of grapefruit in Australia by mild strain protection. In: Proceedings of the 11th conference of the international organization of citrus virologists, pp 64–70Google Scholar
  10. Castle WS, Tucker DPA (1998) Florida citrus rootstocks selection guide. In University of Florida Corporation Extension. University of Florida, Gainesville, FLGoogle Scholar
  11. Castle WS, Tucker DPH, Krezdorn AH, Youtsey CO (1993) Rootstocks for Florida citrus. University of Florida, IFAS, Gainesville, FLGoogle Scholar
  12. Catanzariti AM, Dodds PN, Ve T, Kobe B, Ellis JG, Staskawicz BJ (2010) The AvrM effector from flax rust has a structured C-terminal domain and interacts directly with the M resistance protein. Mol Plant Microbe Interact 23:49–57PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y et al (2013) The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 25:1463–1481PubMedPubMedCentralCrossRefGoogle Scholar
  14. Choi HW, Klessig DF (2016) DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biol 16:232PubMedPubMedCentralCrossRefGoogle Scholar
  15. Costa AS, Muller GW (1980) Tristeza control by cross protection. Plant Dis 64:538–541CrossRefGoogle Scholar
  16. Cuenca J, Aleza P, Vicent A, Brunel D, Ollitrault P, and Navarro L (2013) Genetically based location from triploid populations and gene ontology of a 3.3-Mb genome region linked to Alternaria brown spot resistance in citrus reveal clusters of resistance genes. PLoS ONE 8:e76755.  https://doi.org/10.1371/journal.pone.0076755PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cuenca J, Aleza P, Garcia-Lor A, Ollitrault P, Navarro L (2016) Fine mapping for identification of citrus alternaria brown spot candidate resistance genes and development of new SNP markers for marker-assisted selection. Front Plant Sci 7:1948.  https://doi.org/10.3389/fpls.2016.01948CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dalio RJD, Magalhães DM, Rodrigues CM, Arena GD, Oliveira TS, Souza-Neto RR et al (2017) PAMPs, PRRs, effectors and R-genes associated with citrus–pathogen interactions. Ann Bot 119:749–774. PMID: 28065920Google Scholar
  19. Dalio RJD, Máximo HJ, Oliveira TS, Azevedo TM, Felizatti HL, Campos MA, Machado MA (2018) Molecular basis of Citrus sunki susceptibility and Poncirus trifoliata resistance upon Phytophthora parasitica attack. Mol Plant Microbe Interact 31:386–398PubMedCrossRefPubMedCentralGoogle Scholar
  20. Dawson TE, Mooney PA (2000) Evidence for trifoliate resistance breaking isolates of citrus tristeza virus in New Zealand. In: Fourteenth IOCV conference, pp 69–76Google Scholar
  21. Dawson WO, Garnsey SM, Tatineni S, Folimonova SY, Harper SJ, Gowda S (2013, May 14) Citrus tristeza virus-host interactions. Front Microbiol. 4:88.  https://doi.org/10.3389/fmicb.2013.00088. PMID: 23717303; PMCID: PMC3653117
  22. de Ronde D, Butterbach P, Kormelink R (2014) Dominant resistance against plant viruses. Front Plant Sci 5:30.  https://doi.org/10.3389/fpls.2014.00307CrossRefGoogle Scholar
  23. Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C et al (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA 100:8024–8029PubMedCrossRefPubMedCentralGoogle Scholar
  24. Dinesh-Kumar SP, Whitham S, Choi D, Hehl R, Corr C, Baker B (1995) Transposon tagging of tobacco mosaic virus resistance gene N: its possible role in the TMV-N-mediated signal transduction pathway. Proc Natl Acad Sci USA 92(10):4175–4180PubMedCrossRefPubMedCentralGoogle Scholar
  25. Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang C-I, Ayliffe MA et al (2006) Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc Natl Acad Sci USA 103:8888–8893PubMedCrossRefPubMedCentralGoogle Scholar
  26. Dominguez A, Hermoso de Mendoza A, Guerri J, Cambra M, Navarro L, Moreno P, Pena L (2002) Pathogen derived resistance to citrus tristeza virus (CTV) in transgenic Mexican lime (Citrus aurantifolia (Christ. Swing.) plants expressing its p25 coat protein gene. Mol Breeding 10:1–10CrossRefGoogle Scholar
  27. Duxbury Z, Ma Y, Furzer OJ, Huh SU, Cevik V, Jones JD, Sarris PF (2016) Pathogen perception by NLRs in plants and animals: parallel worlds. BioEssays 38(8):769–781PubMedCrossRefPubMedCentralGoogle Scholar
  28. EFSA PLH (EFSA Panel on Plant Health), Jeger M, Bragard C, Caffier D, Dehnen-Schmutz K, Gilioli G, Gregoire J-C, Ja ques Miret JA, MacLeod A, Navajas Navarro M, Niere B, Parnell S, Potting R, Rafoss T, Rossi V, Urek G, Van Bruggen A, Van der Werf W, West J, Chatzivassiliou E, Winter S, Catara A, Duran-Vila N, Hollo G, Candresse T (2017) Scientific opinion on the pest categorisation of Citrus tristeza virus (non-European isolates). EFSA J 15(10):5031, 29.  https://doi.org/10.2903/j.efsa.2017.5031
  29. Eitas TK, Dangl JL (2010) NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr Opin Plant Biol 13(4):472–477PubMedPubMedCentralCrossRefGoogle Scholar
  30. Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10(4):366–371PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fagoaga C, Lopez C, de Mendoza AH, Moreno P, Navarro L, Flores R, Pena L (2006) Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Mol Biol 60:153–165PubMedCrossRefPubMedCentralGoogle Scholar
  32. Fagoaga C, Pensabene-Bellavia G, Moreno P, Navarro L, Flores R, and Peña L (2011) Ectopic expression of the p23 protein of Citrus tristeza virus differentially modifies viral accumulation and tropism in two transgenic woody hosts. Mol Plant Pathol 12:898–910Google Scholar
  33. Folimonova SY (2013) Developing an understanding of cross-protection by Citrus tristeza virus. Front Microbiol.  https://doi.org/10.3389/fmicb.2013.00076
  34. Folimonova SY, Folomonov AS, Satyanarayana T, Dawson T (2008) Citrus tristeza virus: survival at the edge of the movement continuum. J Virol 82:6546–6556PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fang DQ, Federici CT, Roose ML (1998) A high-resolution linkage map of the citrus tristeza virus resistance gene region in Poncirus trifoliata (L.) Raf. Genetics 150:883–890PubMedPubMedCentralGoogle Scholar
  36. Garnsey SM, Barrett HC, Hutchison DJ (1987) Identification of citrus tristeza virus resistance in citrus relatives and potential applications. Phytophylactica 19:187–191Google Scholar
  37. Garnsey SM, Su H, Tsai M (1997) Differential susceptibility of pummelo and Swingle citrumelo to isolates of citrus tristeza virus. In: Da Graca J, Moreno P, Yokomi R (eds) Proceedings of the 3rd conference of the international organization of citrus virologists (IOCV), Riverside, CA, pp 38–146Google Scholar
  38. Ghosh A, Das A, Meena R, Baranwal VK (2014) Evidence for resistance to Citrus tristeza virus in pomelo (Citrus maxima Merr.) grown in Darjeeling and Sikkim hillsof India. Phytoparasitica 42:503–508CrossRefGoogle Scholar
  39. Gmitter FG Jr, Chen C, Machado MA, Alves de Souza A, Ollitrault P, Froehlicher Y, Shimizu T (2012) Citrus genomics. Tree Genet Genomes 8:611–626CrossRefGoogle Scholar
  40. Gmitter FG, Xiao SY, Huang S, Hu XL, Garnsey SM, Deng Z (1996) A localized linkage map of the citrus tristeza virus resistance gene region. Theor Appl Genet 92:688–695PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gomez-Munoz N, Velazquez K, Vives MC, Guerri J (2017) The resistance of sour orange to Citrus tristeza virus is mediated by both the salycilic acid and the RNA silencing defense pathways. Mol Plant Pathol 18:1253–1266PubMedCrossRefPubMedCentralGoogle Scholar
  42. Graham JH, Menge JA (2000) Phytophthora-induced diseases. In: Compendium of Citrus diseases, (eds. Timmer, L.W., Garnsey, S.M. and Graham, J.H.) American Phytopathlogical Society, St. Paul, MN, pp 12–15Google Scholar
  43. Guidetti-Gonzalez S, Carrer H (2007) Putative resistance genes in the CITEST database. Genet Mol Biol 30:931–942CrossRefGoogle Scholar
  44. Harper SJ (2013, April 23) Citrus tristeza virus: evolution of complex and varied genotypic groups. Front Microbiol 4:93.  https://doi.org/10.3389/fmicb.2013.00093
  45. Heidrich K, Tsuda K, Blanvillain-Baufume S, Wirthmueller L, Bautor J, Parker JE (2013) Arabidopsis TNL-WRKY domain receptor RRS1 contributes to temperature-conditioned RPS4 auto-immunity. Front Plant Sci 4:403PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hogenhout SA, Van der Hoorn RL, Terauchi R, Kamoun S (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant Microbe Interact 22:115–122PubMedCrossRefPubMedCentralGoogle Scholar
  47. Isshiki A, Akimitsu K, Yamamoto M, Yamamoto H (2001) Endopolygalacturonase is essential for citrus black rot caused by Alternaria citri but not brown spot caused by Alternaria alternata. Mol Plant Microbe Interact 14:749–757PubMedCrossRefPubMedCentralGoogle Scholar
  48. Jacob F, Vernaldi S, Maekawa T (2013) Evolution and conservation of plant NLR functions. Front Immunol 4:297Google Scholar
  49. Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19:4004–4014PubMedPubMedCentralCrossRefGoogle Scholar
  50. Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329CrossRefGoogle Scholar
  51. Jones JD, Vance RE, Dangl JL (2016) Intracellular innate immune surveillance devices in plants and animals. Science 354(6316)PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kohmoto K, Itoh Y, Shimomura N, Kondoh Y, Otani H, Kodama M, Nishimura S, Nakatsuka S (1993) Isolation and biological activities of two host-specific toxins from the tangerine pathotype of Alternaria alternata. Phytopathology 83:495–502CrossRefGoogle Scholar
  53. Kamoun S (2009) The secretome of plant-associated fungi and oomycetes. In: Deising HB (ed) The Mycota. Springer, Berlin, pp 173–180CrossRefGoogle Scholar
  54. Keen NT (1990) Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet 24:447–463PubMedPubMedCentralCrossRefGoogle Scholar
  55. Krasileva KV, Dahlbeck D, Staskawicz BJ (2010) Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. Plant Cell 22:2444–2458PubMedPubMedCentralCrossRefGoogle Scholar
  56. Le Roux C, Huet G, Jauneau A, Camborde L, Trémousaygue D, Kraut A et al (2015) A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161(5):1074–1088PubMedCrossRefPubMedCentralGoogle Scholar
  57. Leipe DD, Koonin EV, Aravind L (2004) STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J Mol Biol 343(1):1–28PubMedCrossRefPubMedCentralGoogle Scholar
  58. Lopez C, Cervera M, Fagoaga C, Moreno P, Navarro L, Flores R, Pena L (2010) Accumulation of transgene-derived siRNAs is not sufficient for RNAi-mediated protection against Citrus tristeza virus in transgenic Mexican lime. Mol Plant Pathol 11:33–41PubMedCrossRefPubMedCentralGoogle Scholar
  59. Lu R, Folimonov A, Shintaku M, Li WX, Falk BW, Dawson WO et al (2004) Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc Natl Acad Sci USA 101:15742–15747PubMedPubMedCentralCrossRefGoogle Scholar
  60. Machado MA, Cristofani-Yaly M, Bastianel M (2011) Breeding, genetic and genomic of citrus for disease resistance. Revista Brasileira de Fruticultura 33(spe1):158–172CrossRefGoogle Scholar
  61. Macho AP, Zipfel C (2014) Plant PRRs and the activation of innate immune signaling. Mol Cell 54(2):263–272PubMedCrossRefPubMedCentralGoogle Scholar
  62. Maekawa T, Kracher B, Vernaldi S, Loren Ver, van Themaat E, Schulze-Lefert P (2012) Conservation of NLR-triggered immunity across plant lineages. Proc Natl Acad Sci USA 109(49):20119–20123PubMedCrossRefPubMedCentralGoogle Scholar
  63. McHale L, Tan X, Koehl P, Michelmore R (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212PubMedPubMedCentralCrossRefGoogle Scholar
  64. Mermigka G, Sarris PF (2019) The rise of plant resistosomes. Trends Immunol 40(8):670–673PubMedCrossRefPubMedCentralGoogle Scholar
  65. Mermigka G, Amprazi M, Mentzelopoulou A, Amartolou A, Sarris PF (2020) Plant and animal innate immunity complexes: fighting different enemies with similar weapons. Trends Plant Sci 25(1):80–91PubMedCrossRefPubMedCentralGoogle Scholar
  66. Mestre PF, Asins MJ, Pina JA, Navarro L (1997) Efficient search for new resistant genotypes to the citrus tristeza closterovirus in the orange subfamily Aurantioideae. Theor Appl Genet 95:1282–1288CrossRefGoogle Scholar
  67. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15(4):809–834PubMedPubMedCentralCrossRefGoogle Scholar
  68. Miyamoto Y, Masunaka A, Tsuge T, Yamamoto M, Ohtani K, Fukumoto T et al (2010) ACTTS3 encoding a polyketide synthase is essential for the biosynthesis of act-toxin and pathogenicity in the tangerine pathotype of Alternaria alternata. Mol Plant Microbe Interact 23:406–414.  https://doi.org/10.1094/MPMI-23-4-0406CrossRefPubMedPubMedCentralGoogle Scholar
  69. Moreno P, Ambrós S, Albiach-Martí MR, Guerri J, Peña L (2008) Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol Plant Pathol 9:251–268PubMedCrossRefPubMedCentralGoogle Scholar
  70. Narusaka M, Shirasu K, Noutoshi Y, Kubo Y, Shiraishi T, Iwabuchi M et al (2009) RRS1 and RPS4 provide a dual Resistance-gene system against fungal and bacterial pathogens. Plant J. 60:218–226PubMedCrossRefPubMedCentralGoogle Scholar
  71. Nishimura MT, Dangl JL (2014) Paired plant immune receptors. Science 344:267–268PubMedCrossRefPubMedCentralGoogle Scholar
  72. Ntoukakis V, Saur IM, Conlan B, Rathjen JP (2014) The changing of the guard: the Pto/Prf receptor complex of tomato and pathogen recognition. Curr Opin Plant Biol 20:69–74PubMedPubMedCentralCrossRefGoogle Scholar
  73. Oßwald W, Fleischmann F, Rigling D, Coelho AC, Cravador A, Diez R, Dalio RJ, Horta Jung M, Pfanz H, Robin C, Sipos G, Solla A, Cech T, Chambery A, Diamandis S, Hansen E, Jung T, Orlikowski LB, Parke J, Prospero S, Werres S (2014) Strategies of attack and defence in woody plant-Phytophthora interactions. Forest Pathol 44:169–190CrossRefGoogle Scholar
  74. Panabières F, Amselem J, Galiana E, Le Berre J-Y (2005) Gene identification in the oomycete pathogen Phytophthora parasitica during in vitro vegetative growth through expressed sequence tags. Fungal Genet Biol 42:611–623PubMedCrossRefPubMedCentralGoogle Scholar
  75. Panabieres F, Ali GS, Allagui MB et al (2016) Phytophthora nicotianae diseases worldwide: new knowledge of a long-recognised pathogen. Phytopathologia Mediterranea 55:20–40Google Scholar
  76. Powell CA, Pelosi RR, Cohen M (1992) Superinfection of orange trees containing mild isolates of citrus tristeza virus and severe Florida isolates of citrus tristeza virus. Plant Dis 76:141–144CrossRefGoogle Scholar
  77. Rai M (2006) Refinement of the Citrus tristeza virus resistance gene (Ctv) positional map in Poncirus trifoliata and generation of transgenic grapefruit (Citrus paradisi) plant lines with candidate resistance genes in this region. Plant Mol Biol 61:399–414CrossRefGoogle Scholar
  78. Ravensdale M, Bernoux M, Ve T, Kobe B, Thrall PH et al (2012) Intramolecular interaction influences binding of the flax L5 and L6 resistance proteins to their AvrL567 ligands. PLoS Pathog 8:e1003004PubMedPubMedCentralCrossRefGoogle Scholar
  79. Rosa DD, Campos MA, Targon MLPN, Souza AA (2007) Phytophthora parasitica transcriptome, a new concept in the understanding of the citrus gummosis. Genetics Mol Biol 30:997–1008CrossRefGoogle Scholar
  80. Ruiz-Ruiz S, Navarro B, Gisel A, Peña L, Navarro L, Moreno P, et al. (2011) Citrus tristeza virus infection induces the accumulation of viral small RNAs (21- 24-nt) mapping preferentially at the 3’-terminal region of the genomic RNA and affects the host small RNA profile. Plant Mol Biol 75:607–619PubMedCrossRefPubMedCentralGoogle Scholar
  81. Sahin-Cevik M, Cevik B, Karaca G (2014) Expression analysis of WRKY genes from Poncirus trifoliata in response to pathogen infection. J Plant Interact 9:182–193CrossRefGoogle Scholar
  82. Sarris PF, Cevik V, Dagdas G, Jones JD, Krasileva KV (2016) Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol 14:8PubMedPubMedCentralCrossRefGoogle Scholar
  83. Sarris PF, Duxbury Z, Huh SU, Ma Y, Segonzac C, Sklenar J, Derbyshire P, Cevik V, Rallapalli G, Saucet SB et al (2015) A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161:1089–1100PubMedCrossRefPubMedCentralGoogle Scholar
  84. Saucet SB, Ma Y, Sarris PF, Furzer OJ, Sohn KH, Jones JD (2015) Two linked pairs of Arabidopsis TNL resistance genes independently confer recognition of bacterial effector AvrRps4. Nat Commun 6:6338PubMedCrossRefPubMedCentralGoogle Scholar
  85. Scora RW (1975) On the history and origin of Citrus. Bull Torrey Bot Club 102(6):369–375CrossRefGoogle Scholar
  86. Scott KA, Hlela Q, Zablocki O, Read D, van Vuuren S, Pietersen G (2013) Genotype composition of populations of grapefruit cross protecting Citrus tristeza virus strain GFMS12 in different host plants and aphid-transmitted sub-isolates. Adv Virol 158:27–37Google Scholar
  87. Soler N, Plomer M, Fagoaga C, Moreno P, Navarro L, Flores R, Pena L (2012) Transformation of Mexican lime with an intron-hairpin construct expressing untranslatable versions of the genes coding for the three silencing suppressors of Citrus tristeza virus confers complete resistance to the virus. Plant Biotechnol J 10:597–608PubMedCrossRefPubMedCentralGoogle Scholar
  88. Tatineni S, Dawson WO (2012) Enhancement or attenuation of disease by deletion of genes from Citrus tristeza virus. J Virol 86:7850–7857PubMedPubMedCentralCrossRefGoogle Scholar
  89. Timmer LW, Solel Z, Orozco-Santos M (2000) Alternaria brown spot of mandarins. In Timmer LW, Garnsey SM, Graham JH (eds) Compendium of citrus diseases. The American Phytopathological Society Press, St. Paul, MN, pp 19–21Google Scholar
  90. Timmer LW, Peever TL, Solel Z, Akimitsu K (2003) Alternaria diseases of citrus-novel Pathosystems. Phytopathol Mediterr 42:99–112Google Scholar
  91. Tsuge T, Harimoto Y, Akimitsu K, Ohtani K, Kodama M, Akagi Y et al (2013) Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS Microbiol Rev 37:44–66.  https://doi.org/10.1111/j.1574-6976.2012.00350.xCrossRefPubMedPubMedCentralGoogle Scholar
  92. Van Vuuren SP, Collins RP, da Graca JV (1993) Growth and production of lime trees pre-immunized with mild Citrus tristeza virus isolates. Phytophylactica 25:39–42Google Scholar
  93. Wang Y, Zhou L, Li D, Dai L, Lawton-Rauh A, Srimani PK, Duan Y, Luo F (2015) Genome-wide comparative analysis reveals similar types of NBS genes in hybrid Citrus sinensis genome and original Citrus clementine genome and provides new insights into non-TIR NBS genes. PLoS ONE 10(3):e0121893PubMedPubMedCentralCrossRefGoogle Scholar
  94. Williams SJ, Sohn KH, Wan L, Bernoux M, Sarris PF et al (2014) Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344(6181):299–303PubMedCrossRefPubMedCentralGoogle Scholar
  95. Yoshida T, Schichijo T, Ueno I, Kihara T, Yamada T, Hirai M, Yamada S, Ieki H, Kuramoto T (1983) Survey for resistance of citrus cultivars and hybrid seedlings to Citrus tristeza virus (CTV). Bull Fruit Trees Res Stn Ser 10:51–68Google Scholar
  96. Zanutto CA, Corazza MJ, Carvalho Nunes WM (2013) Evaluation of the protective capacity of new mild Citrus tristeza virus (CTV) isolates selected for a preimmunization program. Scientia Agricola 70:116–124CrossRefGoogle Scholar
  97. Zhou CY, Hailstones D, Broadbent P, Connor R, Bowyer J (2002) Studies on mild strain cross protection against stem-pitting Citrus tristeza virus. In: Proceedings of the 15th conference of the international organization of citrus virologists, pp 125–157Google Scholar
  98. Zhou Y, Zhou CY, Li ZA, Wang XF, Liu KH (2008) Mild strains cross protection against stem-pitting tristeza of sweet orange. Scientia Agricultura Sinica 41:4085–4091Google Scholar
  99. Zhu Y, Qian W, Hua J (2010) Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathog 6:e1000844PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Vittoria Catara
    • 1
    Email author
  • Dai Suming
    • 2
  • Panagiotis F. Sarris
    • 3
    • 4
    • 5
  1. 1.Department of Agriculture, Food and EnvironmentUniversity of CataniaCataniaItaly
  2. 2.Hunan Agricultural UniversityChangshaChina
  3. 3.Institute of Molecular Biology and BiotechnologyFORTHHeraklionGreece
  4. 4.School of BiosciencesUniversity of ExeterExeterUK
  5. 5.Department of BiologyUniversity of CreteCreteGreece

Personalised recommendations