Advertisement

Essential Oils in Citrus

  • Sergio Fatta Del BoscoEmail author
  • Loredana Abbate
  • Francesco Mercati
  • Edoardo Napoli
  • Giuseppe Ruberto
Chapter
  • 36 Downloads
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Citrus essential oils are precious natural compounds characterized by a strong odor and formed as secondary metabolites. They are widely used in many fields all over the world and they have a large economic impact. Their pleasant flavors, bioactive capacity and nutritional value make them an integral part of pharmaceutical, agricultural, cosmetic and food industries. An insight into the chemical compositions of citrus essential oils and their presence in commercial citrus species is given. The chapter presents an overview on the different fields of application of citrus essential oils. The modern frontiers of genetics and biotechnologies open new opportunities for their use in human health, agriculture and environment; potentials, future prospects and challenges are also discussed.

Keywords

Citrus Essential oils Natural compounds Chemical composition Plant extracts Omics 

References

  1. Abbate L, Tusa N, Fatta Del Bosco S, Strano T, Renda A, Ruberto G (2012) Genetic improvement of Citrus fruits: new somatic hybrids from citrus sinensis (L.) Osb. and Citrus limon (L.) Burm. F. Food Res Int 48(1):284–290CrossRefGoogle Scholar
  2. Arce A, Soto A (2008) Citrus essential oils: extraction and deterpenation. Tree For Sci Biotechnol 2(1):1–9Google Scholar
  3. Atarés L, Chiralt A (2016) Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci Technol 48:51–62CrossRefGoogle Scholar
  4. Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46(2):446–475CrossRefGoogle Scholar
  5. Baser KHC, Demirci F (2007) Chemistry of essential oils. In: Berger RG (ed) Flavours and fragrances—chemistry, bioprocessing and sustainability. Springer, Berlin, pp 43–86Google Scholar
  6. Bassene JB, Berti L, Costantino G, Carcouet E, Kamiri M, Tomi F et al (2009a) Inheritance of characters involved in fruit quality in a citrus interspecific allotetraploid somatic hybrid. J Agric Food Chem 57(11):5065–5070PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bassene JB, Froelicher Y, Dhuique-Mayer C, Mouhaya W, Ferrer RM, Ancillo G et al (2009b) Non-additive phenotypic and transcriptomic inheritance in a citrus allotetraploid somatic hybrid between C. reticulata and C. limon: the case of pulp carotenoid biosynthesis pathway. Plant Cell Rep 28:1689–1697PubMedCrossRefPubMedCentralGoogle Scholar
  8. Benjamin G, Tietel Z, Porat R (2013) Effect of rootstock/scion combinations on the flavor of citrus fruit. J Agric Food Chem 61(47):11286–11294CrossRefGoogle Scholar
  9. Bhalla Y, Gupta VK, Jaitak V (2013) Anticancer activity of essential oils: a review. J Sci Food Agric 93(15):3643–3653 (Wiley Online Library)PubMedCrossRefPubMedCentralGoogle Scholar
  10. Borrego S, Valdès O, Vivar I, Lavin P, Guiamet P, Battistoni P, Gomez de Saravia S, Borges P (2012) Essential oils of plants as biocides against microorganisms isolated from Cuban and Argentine documentary heritage. Int Sch Res Netw, ISRN Microbiol 826786(7),  https://doi.org/10.5402/2012/826786Google Scholar
  11. Burt S (2004) Essential oils: their antibacterial properties and potential applications in food—a review. Int J Food Microbiol 94:223–253CrossRefPubMedGoogle Scholar
  12. Callaway TR, Carrol JA, Arthington JD, Edrington TS, Anderson RC, Ricke SC et al (2011) Citrus products and their use against bacteria: potential health and cost benefits (Chap. 17). In Watson R, Gerald JL, Preedy VR (eds) Nutrients, dietary supplements, and nutriceuticals: cost analysis versus clinical benefits, New York, NY, Humana Press, pp 277–286Google Scholar
  13. Campolo O, Cherif A, Ricupero M, Siscaro G, Grissa-Lebdi K, Russo A, Cucci LM, Di Pietro P, Satriano C, Desneux N, Biondi A, Zappalà L, Palmeri V (2017) Citrus peel essential oil nanoformulations to control the tomato borer, Tuta absoluta: chemical properties and biological activity. Sci Rep 7, 13036, nature.comGoogle Scholar
  14. Celia C, Trapasso E, Locatelli M, Navarra M, Ventura CA, Wolfram J, Carafa M, Morittu VM, Britti D, Di Marzio L, Paolino D (2013) Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells. Colloid Surface B: Biointerfaces 112:548–553CrossRefGoogle Scholar
  15. Cevallos-Cevallos JM, Futch DB, Shilts T, Folimonova SY, Reyes-De-Corcuera JI (2012) GC-MS metabolomic differentiation of selected citrus varieties with different sensitivity to citrus huanglongbing. Plant Physiol Biochem 53:69–76PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chin EL, Mishchuk DO, Breksa AP, Slupsky CM (2014) Metabolite signature of Candidatus Liberibacter asiaticus infection in two citrus varieties. J Agric Food Chem 62(28):6585–6591PubMedCrossRefPubMedCentralGoogle Scholar
  17. Ciriminna R, Lomeli-Rodriguez M, Carà PD, Lopez-Sanchez JA, Pagliaro M (2014) Limonene: a versatile chemical of the bioeconomy. Chem Commun 50:15288–15296CrossRefGoogle Scholar
  18. Ciriminna R, Parrino F, De Pasquale C, Palmisano L, Pagliaro M (2018) Photocatalytic partial oxidation of limonene to 1, 2 limonene oxide. Chem Commun 54:1008–1011CrossRefGoogle Scholar
  19. Council of Europe (2004) European pharmacopoeia, 5th edn. Council of Europe, StrasbourgGoogle Scholar
  20. Davey M, Anthony P, Power J, Lowe K (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23:131–171PubMedCrossRefGoogle Scholar
  21. Donsì F, Annunziata M, Sessa M, Ferrari G (2011) Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT-Food Sci Technol 44:1908–1914CrossRefGoogle Scholar
  22. Edris AE (2007) Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Published online in Wiley InterScience, Phytotherapy Research.  https://doi.org/10.1002/ptr.2072CrossRefGoogle Scholar
  23. Eeckhaut T, Shankar Lakshmanan P, Deryckere D, Van Bockstaele E, Van Huylenbroeck J (2013) Progress in plant protoplast research. Planta 238:991–1003PubMedCrossRefGoogle Scholar
  24. Espina L, Somolinos M, Loràn S, Conchello P, Garcia D, Pagàn R (2011) Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food Control 22:896–902CrossRefGoogle Scholar
  25. Fanciullino A, Tomi F, Luro F, Desjobert JM, Casanova J (2005) Chemical variability of peel and leaf oils of mandarin. Flavour Frag J 21:359–367CrossRefGoogle Scholar
  26. Fatta Del Bosco S, Abbate L, Tusa N, Strano T, Renda A, Ruberto G (2013) Genetic improvement of Citrus fruit: the essential oil profiles in a Citrus limon backcross progeny derived from somatic hybridization. Food Res Intl 50:344–350CrossRefGoogle Scholar
  27. Fatta Del Bosco S, Napoli E, Mercati F, Abbate L, Carimi F, Ruberto G (2017) Somatic cybridization for citrus: polyphenols distribution in juices and peel essential oil composition of a diploid cybrid from cleopatra mandarin (Citrus reshni Hort. ex Tan.) and sour orange (citrus aurantium L.). Genet Resour Crop Evol 64(2):261–275Google Scholar
  28. Fisher K, Phillips C (2008) Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends Food Sci Technol 19(3):156–164CrossRefGoogle Scholar
  29. Food and Drug Administration (2005) GRAS notifications, http://www.fda.gov, Retrieved 28 June 10
  30. Forlot P, Pevet P (2012) Bergamot (Citrus bergamia Risso et Poiteau) essential oil: biological properties, cosmetic and medical use. A Rev J Essent Oil Res 24(2):195–201Google Scholar
  31. Galland M, Lounifi I, Cueff G, Baldy A, Morin H, Job D, Rajjou L (2012) A role for “omics” technologies in exploration of the seed nutritional quality. In: Agrawal GK, Rakwal R (eds) Seed development: Omics technologies toward improvement of seed quality and crop yield: omics in seed biology. Springer, Dordrecht, pp 477–501CrossRefGoogle Scholar
  32. Gancel AL, Olle D, Ollitrault P, Luro F, Brillouet JM (2002) Leaf and peel volatile compounds of an interspecific citrus somatic hybrid (citrus aurantium christm + citrus paradisi Macfayden). Flavour Fragr J 17:416–424CrossRefGoogle Scholar
  33. Gancel AL, Ollitrault P, Froelicher Y, Tomi F, Jacquemond C, Luro F, Brillouet JM (2003) Leaf volatile compounds of seven citrus somatic tetraploid hybrids sharing willow leaf mandarin (citrus deliciosa Ten.) as their common parent. J Agric Food Chem 51(20):6006–6013 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gancel AL, Ollitrault P, Froelicher Y, Tomi F, Jacquemond C, Luro F, Brillouet JM (2005a) Citrus somatic allotetraploid hybrids exhibit a differential reduction of leaf sesquiterpenoid biosynthesis compared with their parents. Flavour Fragr J 20:626–632CrossRefGoogle Scholar
  35. Gancel AL, Ollitrault P, Froelicher Y, Tomi F, Jacquemond C, Luro F, Brillouet JM (2005b) Leaf volatile compounds of six citrus somatic allotetraploid hybrids originating from various combination of lime, lemon, citron, sweet orange, and grapefruit. J Agric Food Chem 53(6):2224–2230PubMedCrossRefPubMedCentralGoogle Scholar
  36. Grosser JW, Gmitter FG (1990) Protoplast fusion and citrus improvement. Plant Breed Rev 8:339–374 (Timber Press Inc)Google Scholar
  37. Grosser JW, Gmitter FJ Jr (2011) Protoplast fusion for production of tetraploids and triploids: applications for scion and rootstock breeding in citrus. Plant Cell, Tissue Organ Cult 104:343–357CrossRefGoogle Scholar
  38. Guenther E (1950) the essential oils, vol IV. Van Nostrand, New YorkGoogle Scholar
  39. Gupta M, Bhaskar PB, Sriram S, Wang PH (2017) Integration of omics approaches to understand oil/protein content during seed development in oilseed crops. Plant Cell Rep 36(5):637–652PubMedCrossRefPubMedCentralGoogle Scholar
  40. ISO 9235:2013–Aromatic natural raw materials-vocabularyGoogle Scholar
  41. Hajduch M, Matusova R, Houston NL, Thelen JJ (2011) Comparative proteomics of seed maturation in oilseeds reveals differences in intermediary metabolism. Proteomics 11(9):1619–1629PubMedCrossRefPubMedCentralGoogle Scholar
  42. Harkess et al (2017) The asparagus genome sheds light on the origin and evolution of a young Y chromosome. Nat Commun 8:1279.  https://doi.org/10.1038/s41467-017-01064-8CrossRefPubMedPubMedCentralGoogle Scholar
  43. Holley AH, Patel HM (2005) Improvement in shelf life and safety of perishable food by plant essential oils and smoke antimicrobials. Int J Food Microbiol 22:273–292CrossRefGoogle Scholar
  44. Hong J, Yang L, Zhang D, Shi J (2016) Plant metabolomics: an indispensable system biology tool for plant science. Int J Mol Sci 17(6):767–783PubMedCentralCrossRefGoogle Scholar
  45. Hosni K, Zahed N, Chrif R, Abid I, Medfei W, Kallel M, Ben Brahim N, Sebei H (2010) Composition of peel essential oils from four selected tunisian citrus species: evidence for the genotypic influence. Food Chem 123:1098–1104CrossRefGoogle Scholar
  46. Hosni K, Hassen I, M’Rabet Y, Sebei H, Casabianca H (2013) Genetic relationship between some tunisian citrus species based on their leaf volatile oil constituents. Biochem Syst Ecol 50:65–71CrossRefGoogle Scholar
  47. Hyldgaard M, Mygind T, Meyer RL (2012) Essential oils in food preservation: mode of action, synergies and interactions with food matrix components. Front Microbiol 25:3–12Google Scholar
  48. Jaenson TGT, Garboul S, Palsson K (2006) Repellency of oils of lemon, eucalyptus geranium, and lavender and the mosquito repellent MyggA natural to Ixodes ricinus (Acari: Ixodidae) in the laboratory and field. J Med Entomol 43:731–736PubMedCrossRefPubMedCentralGoogle Scholar
  49. Jaillon et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467.  https://doi.org/10.1038/nature06148CrossRefPubMedPubMedCentralGoogle Scholar
  50. Jing L, Lei Z, Li L, Xie R, Xi W, Guan Y, Sumner LW, Zhou Z (2014) Antifungal activity of citrus essential oils. J Agric Food Chem 62(14):3011–3033PubMedCrossRefPubMedCentralGoogle Scholar
  51. Johnson AAT, Veilleux RE (2001) Somatic hybridization and application in plant breeding. Plant Breed Rev 20:167–225Google Scholar
  52. Jomaa S, Rahmo A, Alnori AS, Chatty ME (2012) The cytotoxic effect of essential oil of Syrian citrus limon peel on human colorectal carcinoma cell line (Lim1863). Middle East J Cancer 3(1):15–21Google Scholar
  53. Katz E, Fon M, Eigenheer RA, Phinney BS, Fass JN, Lin D, Sadka A, Blumwald E (2010) A label-free differential quantitative mass spectrometry method for the characterization and identification of protein changes during citrus fruit development. Proteome Sci 8:68PubMedPubMedCentralCrossRefGoogle Scholar
  54. Koul O, Walia S, Dhaliwal GS (2008) Essential oils as green pesticides: potential and constraints. Biopestic Int 4(1):63–84Google Scholar
  55. Lubbe A, Verpoorte R (2011) Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind Crops Prod 34:785–801CrossRefGoogle Scholar
  56. Luro F, Venturini N, Costantino G, Paolini J, Ollitrault P, Costa J (2012) Genetic and chemical diversity of citron (citrus medica L.) based on nuclear and cytoplasmic markers and leaf essential oil composition. Phytochemistry 77:186–196PubMedCrossRefGoogle Scholar
  57. Maeda K, Ito T, Shioda S (2012) Medical aromatherapy practice in Japan. Essence 10:14–26Google Scholar
  58. Mandalari G, Bennett RN, Bisignano G, Trombetta D, Saija A, Faulds CB, Gasson MJ, Narbad A (2007) Antimicrobial activity of flavonoids extracted from bergamot (citrus bergamia Risso) peel, a byproduct of the essential oil industry. J Appl Microbiol 103:2056–2064PubMedCrossRefPubMedCentralGoogle Scholar
  59. Mehl F, Marti G, Merle P, Delort E, Baroux L, Sommer H, Wolfender JL, Rudaza S, Boccarda J (2015) Integrating metabolomic data from multiple analytical platforms for a comprehensive characterisation of lemon essential oils. Flavour Fragr J 30:131–138CrossRefGoogle Scholar
  60. Muthaiyan A, Martin EM, Natesan S, Crandall PG, Wilkinson BJ, Ricke SC (2012) Antimicrobial effect and mode of action of terpenless cold pressed Valencia orange essential oil on methicillin-resistant Staphylococcus aureus cell lysis. J Appl Microbiol 112:1020–1033PubMedPubMedCentralCrossRefGoogle Scholar
  61. Namazi M, Amir Ali Akbari S, Mojab F, Talebi A, Alavi Majd H, Jannesari S (2014) Aromatherapy with citrus aurantium oil and anxiety during the first stage of labor. Iran Red Crescent Med J 16(6):e18371PubMedPubMedCentralCrossRefGoogle Scholar
  62. Nannapaneni R, Chalova VI, Crandall PG, Ricke SC, Johnson MG, O’Bryan CA (2009) Campylobacter and Arcobacter species sensitivity to commercial orange oil fractions. Int J Food Microbiol 129:43–49PubMedCrossRefGoogle Scholar
  63. Napoli E, Ruberto G, Abbate L, Mercati F, Fatta Del Bosco S (2016) Citrus genetic improvement: new citrus hybrids from breeding procedures and evaluation of their genetic and phytochemical aspects. Citrus fruits: production, consumption and health benefits; book chapter, Nova Science Publishers, Inc., pp 135–175Google Scholar
  64. Navarra M, Ferlazzo N, Cirmi S, Trapasso E, Bramanti P, Lombardo GE, Minciullo PL, Calapai G, Gangemi S (2015) Effects of bergamot essential oil and its extractive fractions on SH-SY5Y human neuroblastoma cell growth. J Pharm Pharmacol 67:1042–1053PubMedCrossRefGoogle Scholar
  65. O’Bryan CA, Crandall PG, Chalova VI, Ricke SC (2008) Orange essential oils antimicrobial activities against Salmonella spp. J Food Sci 73:M264–M267PubMedCrossRefGoogle Scholar
  66. Oussalah M, Caillet S, Saucier L, Lacroix M (2007) Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control 18:414–420CrossRefGoogle Scholar
  67. Palazzolo E, Laudicina VA, Germanà MA (2013) Current and potential use of Citrus essential oils. Curr Org Chem 17:3402–3409CrossRefGoogle Scholar
  68. Pittman CI, Pendleton S, Bisha B, O’Bryan C, Goodridge L, Crandall PG et al (2011) Validation of the use of citrus essential oils as a post-harvest intervention against Escherichia coli O 157:H7 and Salmonella spp on beef primal cuts. J Food Sci 76:M433–M438PubMedCrossRefPubMedCentralGoogle Scholar
  69. Phillips CA, Laird K, Allen SC (2012) The use of Citri-Vtm an antimicrobial citrus essential oil vapour for the control of Penicillum chrysogenum, Aspergillus niger and Alternaria alternata in vitro and on food. Food Res Int 47(2):310–314CrossRefGoogle Scholar
  70. Raina AK, Bland J, Dollitle M, Lax A, Boopathy R, Lolkins M (2007) Effect of orange oil extract on the formosan subterranean termite (Isoptera: Rhinotermitidae). J Econ Entomol 100:880–885PubMedCrossRefPubMedCentralGoogle Scholar
  71. Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Rezaee MB, Jaimand K, Alinezhad S, Saberi R et al (2009) Chemical compositionand antiaflatoxigenic activity of Carum carvi L., Thymus vulgaris and Citrus aurantifolia essential oils. Food Control 20:1018–1024CrossRefGoogle Scholar
  72. Ribeiro-Santos R, Andrade M, Ramos de Melo N, Sanches-Silva A (2017) Use of essential oils in active food packaging: recent advances and future trends. Trends Food Sci Technol 61:132–140CrossRefGoogle Scholar
  73. Rivera Calo J, Crandall PG, O’Bryan CA, Ricke SC (2015) Essential oils as antimicrobials in food systems—a review. Food Control 54:111–119CrossRefGoogle Scholar
  74. Ruberto G (2002) Analysis of volatile components of Citrus fruit essential oils. In: Jackson JF, Linskens HF (eds) Analysis of taste and aroma. Springer, Berlin, pp 123–157CrossRefGoogle Scholar
  75. Rubiolo P, Sgorbini B, Liberto E, Cordero C, Bicchi C (2010) Essential oils and volatiles: sample preparation and analysis. A Rev Flavor Fragr J 25:282–290CrossRefGoogle Scholar
  76. Sangwan NS, Farooqi AHA, Shabih F et al (2001) Regulation of essential oil production in plants. Plant Growth Regul 34:3–21CrossRefGoogle Scholar
  77. Sànchez-Gonzales L, Chafer M, Chiralt A, Gonzeles-Martinez C (2010) Physical properties of edible chitosan films containing bergamot essential oil and their inhibitory action on Penicillium italicum. Carbohyd Polym 82(2):277–283CrossRefGoogle Scholar
  78. Sato et al (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641.  https://doi.org/10.1038/nature11119CrossRefGoogle Scholar
  79. Sawamura M (2005) Citrus junos Sieb. ex Tanaka (yuzu) fruit. In: Dris R (ed) Fruits, growth, nutrition and quality, Helsinky, Finland WFL Publisher, pp 1–24Google Scholar
  80. Sawamura M (2011) Citrus essential oils: flavor and fragrance. Wiley Publication, BookGoogle Scholar
  81. Singh P, Shukla R, Kumar A, Prakash B, Singh S, Dubey NK (2010a) Effect of Citrus reticulata and Cymbopogon citratus essential oils on Aspergillus flavus growth and aflatoxin production on Asparagus racemosus. Mycopathologia 170:195–202PubMedCrossRefPubMedCentralGoogle Scholar
  82. Singh P, Shukla R, Prakash B, Kumar A, Singh S, Mishra PK, Dubey NK (2010b) Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L) Osbeck essential oils and their cyclic monoterpene, dl-limonene. Food Chem Toxicol 48:1734–1740PubMedCrossRefPubMedCentralGoogle Scholar
  83. Shukla R, Kumar A, Singh P, Dubey NK (2009) Efficacy of Lippia alba (Mill.) N.E. Brown essential oil and its monoterpene aldehyde constituents against fungi isolated from some edible legume seeds and aflatoxin B1 production. Int J Food Microbiol 135:165–170PubMedCrossRefPubMedCentralGoogle Scholar
  84. Swanson-Wagner RA, DeCook R, Jia Y, Bancroft T, Ji T, Zhao X, Nettleton D, Schnable PS (2009) Paternal dominance of trans-eQTL influences gene expression patterns in maize hybrids. Science 326(5956):1118–1120PubMedCrossRefPubMedCentralGoogle Scholar
  85. Syrenne RD, Shi W, Stewart CN, Yuan JS (2012) Omics platforms: importance of twenty-first century genome-enabled technologies in seed developmental research for improved seed quality and crop yield. In: Agrawal GK, Rakwal R (eds) Seed development: omics technologies toward improvement of seed quality and crop yield: OMICS in seed biology. Springer, Dordrecht, pp 43–57CrossRefGoogle Scholar
  86. Thao NP, Tran LS (2016) Enhancement of plant productivity in the post-genomics era. Curr Genom 17(4):295–296CrossRefGoogle Scholar
  87. Thomas AF, Bessière Y (1989) Limonene. Nat Prod Rep 6:291–309CrossRefGoogle Scholar
  88. Tongnuanchan P, Benjakul S, Prodpran T (2012) Properties and antioxidant activity of fish skin gelatin film incoporated with citrus essential oils. Food Chem 134(3):1571–1579PubMedCrossRefPubMedCentralGoogle Scholar
  89. Trabelsi D, Hamdane AM, Said MB, Abdrrabba M (2016) Chemical composition and antifungal activity of essential oils from flowers, leaves and peels of Tunisian citrus aurantium against Penicillium digitatum and Penicillium italicum. J EssTial Oil Bear Plants 19(7):1660–1674CrossRefGoogle Scholar
  90. Tranchida PQ, Bonaccorsi I, Dugo P, Mondello L, Dugo G (2012) Analysis of citrus essential oils: state of art and future perspectives. A Rev Flavour Fragr J 27:98–123CrossRefGoogle Scholar
  91. Tusa N, Abbate L, Renda A, Ruberto G (2007) Polyphenols distribution in juices from citrus allotetraploid somatic hybrids and their sexual hybrids. J Agric Food Chem 55(22):9089–9094PubMedCrossRefGoogle Scholar
  92. Velasco et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839PubMedCrossRefPubMedCentralGoogle Scholar
  93. Velazquez-Nunez MJ, Avila-Sosa R, Palou E, Lopez-Malo A (2013) Antifungal activity of orange (Citrus sinensis var. Valencia) peel essential oil applied by direct addition of vapor contact. Food Control 31:1–4CrossRefGoogle Scholar
  94. Verzera A, Trozzi A, Gazea F, Cicciarello G, Cotroneo A (2003) Effects of rootstock on the composition of Bergamot (Citrus bergamia Risso et Poiteau) essential oil. J Agric Food Chem 51:206–210PubMedCrossRefPubMedCentralGoogle Scholar
  95. Vieria AJ, Beserra FP, Souza MC, Totti BM, Rozza AL (2018) Limonene: aroma of innovation in health and disease. Chem Biol Interact 283:97–106CrossRefGoogle Scholar
  96. Vilela Dias M, Silva de Medeiros H, de F. Ferreira Soares N, Ramos de Melo N, Vilela Borges S, de Deus Souza Carneiro J, Teixeira de Assis Kluge Pereira JM (2013) Development of low-density polyethylene films with lemon aroma. LWT—Food Sci Technol 50:167–171Google Scholar
  97. Visalli G, Ferlazzo N, Cirmi S, Campiglia P, Gangemi S, Di Pietro A, Calapai G, Navarra M (2014) Bergamot juice extract inhibits proliferation by inducing apoptosis in human colon cancer cells. Anti-Cancer Agents Med Chem (Formerly Current Medicinal Chemistry - Anti-Cancer Agents) 14(10):1402–1413PubMedCrossRefPubMedCentralGoogle Scholar
  98. Voo SS, Lange BM (2014) Sample preparation for single cell transcriptomics: essential oil glands in citrus fruit peel as an example. Methods Mol Biol 1153:203–212PubMedCrossRefPubMedCentralGoogle Scholar
  99. Watanabe E, Kuchta K, Kimura M, Rauwald HW, Kamei T, Imanishi J (2015) Effects of bergamot (citrus bergamia Risso) essential oil aromatherapy on mood states, parasympathetic nervous system activity, and salivary cortisol levels in 41 healthy females. Forsch Komplementmed 22(1):43–49PubMedPubMedCentralGoogle Scholar
  100. Wu J, Xu Z, Zhang Y, Chai L, Yi H, Deng X (2014) An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus. J Exp Bot 65:1651–1671PubMedPubMedCentralCrossRefGoogle Scholar
  101. Xu et al (2012) The draft genome of sweet orange (citrus sinensis). Nat Genet 45:59–66.  https://doi.org/10.1038/ng.2472CrossRefPubMedGoogle Scholar
  102. Yang C, Chen H, Chen H, Zhong B, Luo X, Chun J (2017) Antioxidant and anticancer activities of essential oil from Gannan Navel orange peel. Molecules 22(8):1391PubMedCentralCrossRefPubMedGoogle Scholar
  103. Yavari Kia P, Safajou F, Shahnazi M, Nazemiyeh H (2014) The effect of lemon inhalation aromatherapy on nausea and vomiting of pregnancy: a double-blinded, randomized, controlled clinical trial. Iran Red Crescent Med J 16(3):e14360PubMedPubMedCentralCrossRefGoogle Scholar
  104. Zhang YJ, Wang XJ, Wu JX, Chen SY, Chen H, Chai LJ, Yi HL (2014) Comparative transcriptome analyses between a spontaneous late-ripening sweet orange mutant and its wild type suggest the functions of ABA, sucrose and JA during citrus fruit ripening. PLoS ONE 9:e116056PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sergio Fatta Del Bosco
    • 1
    Email author
  • Loredana Abbate
    • 1
  • Francesco Mercati
    • 1
  • Edoardo Napoli
    • 2
  • Giuseppe Ruberto
    • 2
  1. 1.Institute of Biosciences and BioresourcesNational Research Council of ItalyPalermoItaly
  2. 2.Istituto del CNR di Chimica Biomolecolare (ICB-CNR)CataniaItaly

Personalised recommendations