Advertisement

Interfaces of Incompleteness

  • Giuseppe LongoEmail author
Chapter
Part of the Contemporary Systems Thinking book series (CST)

Abstract

Science constructs tools for knowledge and, occasionally, this bold enterprise may let a few believe in the “completeness” of a given theoretical frames: as for these phenomena, we can predict, derive, compute ... everything. Yet, negative results, often based on the very tools proposed by the scientific approaches, set the limits to knowledge construction and opened the way to new science. Scientism instead assume to increasingly and completely occupy reality by pre-given scientific tools. Early positivism, with Laplace, expected to obtain the predictability of classical dynamics, of the Solar system in particular, from their explicit determination by suitable sets of equations. Poincaré’s negative answer set the limits of this hypothesis of complete deducibility of “all astronomical facts” by the equational approach to classical mechanics. Less than one century later, Hilbert, by his novel meta-mathematical foundation of mathematics, hoped to completely and consistently derive all mathematical properties by formal deduction. Gödel disproved this conjecture by tools that are internal to the formalist approach, similarly as Poincaré had disproved Laplace’s dream by a formal analysis of the equations. Also Einstein worked at the possible incompleteness of Quantum Mechanics, from a relativistic perspective. Finally, we will then address the supposed completeness of molecular descriptions in Biology, that is, of DNA seen as the locus of hereditary information and as the complete program, the “blue print”, of ontogenesis.

References

  1. Aspect, A., Grangier, P., & Roger, G. (1982). Experimental realization of the Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A new violation of Bell’s inequalities. Physical Review Letters, 49, 91–94.CrossRefGoogle Scholar
  2. Asperti, A., & Longo, G. (1991). Categories, types and structures: An introduction to category theory for the working computer scientist. Cambridge, MA: The MIT Press.zbMATHGoogle Scholar
  3. Baez, J., & Stay, M. (2012). Algorithmic thermodynamics. Mathematical Structures in Computer Science, 22(5), 771–787.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Bailly, F., & Longo, G. (2009). Biological organization and anti-entropy. Journal of Biological Systems, 17(1), 63–96.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Bailly, F., & Longo, G. (2011). Mathematics and natural sciences. The physical singularity of life. London: Imperial College Press. (original version in French, Hermann, Paris, 2006).Google Scholar
  6. Barrow-Green, J. (1997). Poincaré and the three-body problem. Providence/London: American Mathematical Society/London Mathematical Society.zbMATHGoogle Scholar
  7. Beadle, G. W., & Tatum, E. L. (1941). Genetic control of developmental reactions. American Nauturalist, 75, 107–116.CrossRefGoogle Scholar
  8. Béguin, F. (2006). Le mémoire de Poincaré pour le prix du roi Oscar. In E. Charpentier, E. Ghys, & A. Lesne (Eds.), L’héritage scientifique de Poincaré. Paris: Belin.Google Scholar
  9. Bell, J. S. (1964). On the Einstein-Podolsky-Rosen paradox. Physics, 1(3), 195–200.MathSciNetCrossRefGoogle Scholar
  10. Berthoz, A. (1997). Le sens du mouvement. Paris: Odile Jacob. (English transl.: The Brain Sens of Movement, Harvard University Press, 2000).Google Scholar
  11. Bezem, M., Klop, J. W., & Roelde Vrijer, R. (2013). Term rewriting systems. Cambridge: Cambridge University Press.Google Scholar
  12. Bravi, B., & Longo, G. (2015). The unconventionality of nature: Biology, from noise to functional randomness. In C. S. Calude & M. J. Dinneen (Eds.), Unconventional computation and natural computation (pp. 3–34). Cham: Springer.CrossRefGoogle Scholar
  13. Buiatti, M., & Longo, G. (2013). Randomness and multi-level interactions in biology. Theory in Biosciences, 132(3), 139–158.CrossRefGoogle Scholar
  14. Calude, C. (2002). Information and randomness (2nd ed.). Berlin: Springer.zbMATHCrossRefGoogle Scholar
  15. Calude, C., & Longo, G. (2016a). Classical, quantum and biological randomness as relative unpredictability. Natural Computing, 15(2), 263–278.MathSciNetzbMATHCrossRefGoogle Scholar
  16. Calude, C., & Longo, G. (2016b). The deluge of spurious correlations in big data. Foundations of Science (March), 1–18. https://doi.org/10.1007/s10699-016-9489-4 MathSciNetzbMATHCrossRefGoogle Scholar
  17. Charpentier, E., Ghys, E., & Lesne, A. (Eds.). (2006). L’héritage scientifique de Poincaré. Paris: Belin.zbMATHGoogle Scholar
  18. Crick, F. H. C. (1958). Central dogma of molecular biology. Nature, 227(8), 561–563.Google Scholar
  19. Crick, F. H. C. (1966). Of molecules and man. Seattle, WA: Washington University Press.Google Scholar
  20. Collins, F. (1999). Medical and societal consequences of the Human Genome Project. The New England Journal of Medicine.CrossRefGoogle Scholar
  21. Danchin, A. (2003). The delphic boat. What genomes tell us. Cambridge, MA: Harvard University Press.Google Scholar
  22. Danchin, A. (2009). Bacteria as computers making computers. Microbiology Reviews, 33, 3–26.Google Scholar
  23. Dehaene, S. (1997). La bosse des Maths. Paris: Odile Jacob. (English transl., Oxford University Press, 1998).Google Scholar
  24. Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physics Review, 47(10), 777–780.zbMATHCrossRefGoogle Scholar
  25. Elowitz, M. B., Levine, A. J., Siggia, E., & Swain, P. S. (2002). Stochastic gene expression in a single cell. Science, 297(5584), 1183–1186.CrossRefGoogle Scholar
  26. Enriques, F. (1983). Filosofia scientifica. Dimensioni, 8(28/29), 46–50. (Special Issue: “La Filosofia Scientifica a Congresso, Parigi, 1935”, G. Polizzi (Ed.)).Google Scholar
  27. Faracovi, O., Speranza, F., & Enriques, F. (1998). Filosofia e storia del pensiero scientifico. Livorno: Belforte.Google Scholar
  28. Fox Keller, E. (2000). The century of the gene. Cambridge, MA: Harvard University Press.Google Scholar
  29. Frege, G. (1884). The foundations of arithmetic. Evanston, IL: Northwestern University Press. (original German ed.: 1884).Google Scholar
  30. Gács, P., Hoyrup, M., & Rojas, C. (2009). Randomness on computable metric spaces: A dynamical point of view. In 26th International Symposium on Theoretical Aspects of Computer Science, (STACS 2009) (pp. 469–480).Google Scholar
  31. Gallier, J. (1991). What is so special about Kruskal’s theorem and the ordinal Γ0? Annals of Pure and Applied Logic, 53, 199–260.MathSciNetzbMATHCrossRefGoogle Scholar
  32. Gentzen, G. (1969). In M. E. Szabo (Ed.), The collected papers of Gerard Gentzen. Amsterdam: North-Holland.Google Scholar
  33. Girard, J.-Y. (1971). Une Extension de l’Interpretation de Gödel à l’Analyse, et son Application à l’Élimination des Coupures dans l’Analyse et la Théorie des Types. In Proceedings of the Second Scandinavian Logic Symposium, Amsterdam (pp. 63–92).Google Scholar
  34. Girard, J. Y., Lafont, Y., & Taylor, P. (1990). Proofs and types. Cambridge, MA: Cambridge University Press.zbMATHGoogle Scholar
  35. Gödel, K. (1986–2003). In S. Feferman et al. (Eds.), Collected works (5 volumes). Oxford, NY: Oxford University Press.zbMATHGoogle Scholar
  36. Goubault, E. (2000). Geometry and concurrency: A user’s guide. Mathematical Structures in Computer Science, 10(4), 411–425.MathSciNetzbMATHCrossRefGoogle Scholar
  37. Gouyon, P.-H., Henry, J.-P., & Arnoud, J. (2002). Gene avatars, The Neo-Darwinian theory of evolution. New York, NY: Kluwer Academic Publishers.Google Scholar
  38. Harrington, L. A., Morley, M. D., Sčědrov, A., & Simpson, S. G. (Eds.). (1985). H. Friedman’s research on the foundations of mathematics. Amsterdam: North-Holland.zbMATHGoogle Scholar
  39. Hilbert, D. (1899). Grundlagen der Geometrie. Leipzig: Teubner. (English ed.: “Foundations of Geometry”. La Salle, IL: Open Court,1971).Google Scholar
  40. Husserl, E (1933). The origin of geometry. In J. Derrida (1989), Edmund Husserl’s origin of geometry. An introduction (pp. 157–180). Lincoln, NE: University of Nebraska Press.Google Scholar
  41. Jacob, F. (1965). Génétique cellulaire. (Leçon inaugurale prononcée le vendredi 7 mai 1965). Paris: Collège de France.CrossRefGoogle Scholar
  42. Jacob, F. (1974). Le modèle linguistique en biologie. Critique, 30(322), 197–205.Google Scholar
  43. Kreisel, G. (1984). Four lettters to G. Longo. (http://www.di.ens.fr/users/longo/files/FourLettersKreisel.pdf).Google Scholar
  44. Kruskal, J. (1960). Well-quasi-ordering and the tree theorem. Transactions of the American Mathematical Society, 95, 210–225.MathSciNetzbMATHGoogle Scholar
  45. Kunnen, K. (1980). Set theory: An introduction to independence proofs. Amsterdam: North-Holland.Google Scholar
  46. Laskar, J. (1989). A numerical experiment on the chaotic behaviour of the Solar system. Nature, 338, 237–238.CrossRefGoogle Scholar
  47. Laskar, J. (1994). Large scale chaos in the Solar system. Astronomy and Astrophysics, 287, L9–L12.Google Scholar
  48. Lighthill, M. J. (1986). The recently recognized failure of predictability in Newtonian dynamics. Proceedings of the Royal Society of London A, 407, 35–50.Google Scholar
  49. Longo, G. (1996). The Lambda-Calculus: Connections to higher type recursion theory, proof-theory, category theory. A short (advanced) course on lambda-calculus and its mathematics, Spring 1996. (Revision of “On Church’s Formal Theory of Functions and Functionals”. Annals Pure Appl. Logic, 40(2), 93–133, 1988).Google Scholar
  50. Longo, G. (2005). The cognitive foundations of mathematics: Human gestures in proofs. In P. Grialou, G. Longo & M. Okada (Eds.), Images and reasoning (pp. 105–134). Tokio: Keio University Press.Google Scholar
  51. Longo, G. (2011). Reflections on concrete incompleteness. Philosophia Mathematica, 19(3), 255–280.MathSciNetzbMATHCrossRefGoogle Scholar
  52. Longo, G. (2014). Science, Problem Solving and Bibliometrics. In W. Blockmans, L. Engwall & D. Weaire (Eds.), Bibliometrics: Use and abuse in the review of research performance (pp. 9–15). London: Portland Press.Google Scholar
  53. Longo, G. (2016). The consequences of philosophy. Glass-Bead (web-journal). (http://www.glass-bead.org/article/the-consequences-of-philosophy/?lang=enview).
  54. Longo, G. (2018a). Information and causality: Mathematical reflections on cancer biology. Organisms Journal of Biological Sciences, 2(1), 83–103.Google Scholar
  55. Longo, G. (2018b). Complexity, information and diversity, in science and in democracy. In V. Bühlmann, M. R. Doyle & S. Savic (Eds.), The Ghost of Transparency: An Architectonics of Communication. New York, NY: Springer.Google Scholar
  56. Longo, G. (2018c). Letter to Alan Turing. Theory, Culture and Society, (Special Issue on “Transversal Posthumanities”). https://doi.org/10.1177/0263276418769733.
  57. Longo, G., & Montévil, M. (2014). Perspectives on organisms: Biological time, symmetries and singularities. Berlin: Springer.CrossRefGoogle Scholar
  58. Longo, G., & Tendero, P.-E. (2007). The differential method and the causal incompleteness of programming theory in molecular biology. Foundations of Science, 12, 337–366.zbMATHCrossRefGoogle Scholar
  59. Martin-Löf, P. (1966). The definition of random sequences. Information and Control, 9, 602–619.MathSciNetzbMATHCrossRefGoogle Scholar
  60. Maynard-Smith, J. (1999). The idea of information in biology. The Quarter Review of Biology, 74, 495–400.Google Scholar
  61. Mayr, E. (1961). Cause and effect in biology. Science, 134(348), 1501–1506.CrossRefGoogle Scholar
  62. Monod, J. (1970). Le Hasard et la Nécessité. Paris: Éditions du Seuil.Google Scholar
  63. MSCS Editorial Board. (2009). Editors’ note: Bibliometrics and the curators of orthodoxy. Mathematical Structures in Computer Science, 19(1), 1–4.CrossRefGoogle Scholar
  64. Paris, J., & Harrington, L. (1978). A mathematical incompleteness in Peano Arithmetic. In J. Barwise (Ed.), Handbook of mathematical logic (pp. 1133–1142). Amsterdam: North-Holland.Google Scholar
  65. Peano G. (1889). Arithmetices principia, nova methodo exposita. Torino: Bocca.zbMATHGoogle Scholar
  66. Petersen, K. (1983). Ergodic theory. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  67. Piazza, M., & Pulcini G. (2016). What’s so special about the Gödel sentence G? In F. Boccuni & A. Sereni (Eds.), Objectivity, realism, and proof: FilMat studies in the philosophy of mathematics (pp. 245–263). Cham: Springer.CrossRefGoogle Scholar
  68. Pilyugin, S. Yu. (1999). Shadowing in dynamical systems. Berlin/New York: Springer.zbMATHGoogle Scholar
  69. Poincaré, H. (1892). Les Méthodes Nouvelles de la Mécanique Céleste. Paris: Gauthier-Villars.zbMATHGoogle Scholar
  70. Poincaré, H. (1902). La Science et l’Hypothèse. Paris: Flammarion.zbMATHGoogle Scholar
  71. Poincaré, H. (1906). Les mathématiques et la logique. Revue de Métaphysique et de Morale, 14(3), 294–317.zbMATHGoogle Scholar
  72. Poincaré, H. (1908). Science et Méthode. Paris: Flammarion.zbMATHGoogle Scholar
  73. Rathjen, M., & Weiermann, A. (1993). Proof-theoretic investigations on Kruskal’s theorem. Annals of Pure and Applied Logic, 60, 49–88.MathSciNetzbMATHCrossRefGoogle Scholar
  74. Rogers, H. (1967). Theory of recursive functions and effective computability. New York: McGraw Hill.zbMATHGoogle Scholar
  75. Ruelle, D., & Takens, F. (1971a). On the nature of turbulence. Communications in Mathematical Physics, 20, 167–192.MathSciNetzbMATHCrossRefGoogle Scholar
  76. Ruelle, D., & Takens, F. (1971b). Note concerning our paper “On the nature of turbulence”. Communications in Mathematical Physics, 23, 343–344.MathSciNetzbMATHCrossRefGoogle Scholar
  77. Schrödinger, E. (1944). What is life? The physical aspect of the living cell. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  78. Sieg, W. (1994). Mechanical procedures and mathematical experience. In A. George (Ed.), Mathematics and mind (pp. 71–117). New York, NY: Oxford University Press.zbMATHGoogle Scholar
  79. Smorynski, C. (1977). The incompleteness theorems. In J. Barwise & H. J. Keisler (Eds.), Handbook of mathematical logic (pp. 821–866). Amsterdam: North-Holland.CrossRefGoogle Scholar
  80. Soto, A. M., Longo, G., & Noble, D. (Eds.). (2016). From the century of the genome to the century of the organism: New theoretical approaches. (Special issue), Progress in Biophysics and Molecular Biology, 122(1), 1–82. (https://doi.org/10.1016/j.pbiomolbio.2016.06.006). (Epub 2016 Jul 2. Review. PubMed PMID: 27381480, Oct., 2016).CrossRefGoogle Scholar
  81. Turing, A. M. (1950). Computing machinery and intelligence. Mind, 49(236), 433–460.MathSciNetCrossRefGoogle Scholar
  82. Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society B, 237(641), 37–72.MathSciNetzbMATHCrossRefGoogle Scholar
  83. Weyl, H. (1949). Philosophy of mathematics and natural sciences. Princeton, NJ: Princeton University Press. (original German ed.: 1927).Google Scholar
  84. Weyl, H. (1952). Symmetry. Princeton, NJ: Princeton University Press.zbMATHCrossRefGoogle Scholar
  85. Wittgenstein, L. (1975). In R. Rhees (Ed.), Philosophical remarks. Chicago, IL: The University of Chicago Press. (original German ed.: 1964).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centre Cavaillès, République des Savoirs, CNRSCollège de France et École Normale SupérieureParisFrance
  2. 2.School of MedicineTufts UniversityBostonUSA

Personalised recommendations