Advertisement

A Survey on p-Adic Integrals

  • Ugur DuranEmail author
  • Hemen Dutta
Chapter

Abstract

The p-adic numbers are a counterintuitive arithmetic system and were firstly introduced circa end of the nineteenth century. In conjunction with the introduction of these numbers, many mathematicians and physicists started to develop new scientific tools using their available, useful, and applicable properties. Several effects of these researches have emerged in mathematics and physics such as p-adic analysis, string theory, p-adic quantum mechanics, quantum field theory, representation theory, algebraic geometry, complex systems, dynamical systems, and genetic codes. One of the important tools of the mentioned advancements is the p-adic integrals. Intense research activities in such an area like p-adic integrals are principally motivated by their significance in p-adic analysis. Recently, p-adic integrals and its diverse extensions have been studied and investigated in detail by many mathematicians. This chapter considers and investigates multifarious extensions of the p-adic integrals elaborately. q-Analogues with diverse extensions of p-adic integrals are also considered such as the weighted p-adic q-integral on \( \mathbb {Z} _{p}\). The two types of the weighted q-Boole polynomials and numbers are introduced and investigated in detail. As several special polynomials and numbers can be derived from the p-adic integrals, some generalized and classical q-polynomials and numbers are obtained from the aforesaid extensions of p-adic integrals. Finally, the importance of these extensions is analyzed.

References

  1. 1.
    S. Araci, D. Erdal, J.J. Seo, A study on the fermionic p-adic q-integral representation on associated with weighted q -Bernstein and q-Genocchi polynomials. Abst. Appl. Anal. 2011 (2011). Article ID 649248. https://doi.org/10.1155/2011/649248 MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    S. Araci, E. Ağyüz, M. Acikgoz, On a q-analog of some numbers and polynomials. J. Inequal. Appl. 19 (2015). https://doi.org/10.1186/s13660-014-0542-y
  3. 3.
    S. Araci, U. Duran, M. Acikgoz, Symmetric identities involving q-Frobenius-Euler polynomials under Sym (5). Turkish J. Anal. Number Theory 3(3), 90–93 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Araci, M. Acikgoz, U. Duran, On weighted q-Daehee numbers and polynomials, Indag. Math. 30(2), 365–374 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    D.V. Dolgy, T. Kim, S.-H. Rim, J.-J. Seo, A note on Changhee polynomials and numbers with q-parameters. Int. J. Math. Anal. 8(26), 1255–1264 (2014)CrossRefGoogle Scholar
  6. 6.
    D.V. Dolgy, T. Kim, S.-H. Rim, S.-H. Lee, Some symmetric identities for h-extension of q-Euler polynomials under third dihedral group D 3. Int. J. Math. Anal. 8(48), 2369–2374.3 (2014)CrossRefGoogle Scholar
  7. 7.
    U. Duran, M. Acikgoz, On applications for Mahler expansion associated with p-adic q-integrals. Int. J. Number Theory 15(1), 67–84 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    F.G. Gurkan, M. Acikgoz, E. Agyuz, A study on the new mixed-type polynomials related to Boole polynomials. Afr. Mat. 28(1–2), 279–290 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Ö.Ç. Havara, H. Menken, On the Volkenborn integral of the q-extension of the p-adic gamma function. J. Math. Anal. 8(2), 64–72 (2017)MathSciNetGoogle Scholar
  10. 10.
    L.-C. Jang, T. Kim, q-Genocchi numbers and polynomials associated with fermionic p-adic invariant integrals on \( \mathbb {Z} _{p}\). Abstr. Appl. Anal. 2008, 8 pp. (2008). Article ID 232187Google Scholar
  11. 11.
    Y.S. Jang, T. Kim, S.-H. Rim, J.-J. Seo, Symmetry identities for the generalized higher-order q-Bernoulli polynomials under S 3. Int. J. Math. Anal. 8(38), 1873–1879 (2014)CrossRefGoogle Scholar
  12. 12.
    T. Kim, q-Volkenborn integration. Russ. J. Math. Phys. 9, 288–299 (2002)Google Scholar
  13. 13.
    T. Kim, A note on q-Volkenborn integration. Proc. Jangjeon Math. Soc. 8(1), 13–17 (2005)MathSciNetzbMATHGoogle Scholar
  14. 14.
    D.S. Kim, A note on p-adic invariant integral in the rings of p -adic integers. Adv. Stud. Contemp. Math. 13, 95–99 (2006)MathSciNetzbMATHGoogle Scholar
  15. 15.
    T. Kim, q-Euler numbers and polynomials associated with p -adic q-integrals. J. Nonlinear Math. Phys. 14(1), 15–27 (2007).  https://doi.org/10.2991/jnmp.2007.14.1.3 MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    T. Kim, Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on \( \mathbb {Z} _{p}\). Russ. J. Math. Phys. 16, 484–491 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    T. Kim, On the weighted q-Bernoulli numbers and polynomials. Adv. Stud. Contemp. Math. 21, 207–215 (2011)MathSciNetzbMATHGoogle Scholar
  18. 18.
    D.S. Kim, T. Kim, Daehee numbers and polynomials. Appl. Math. Sci. 7(120), 5969–5976 (2013)MathSciNetGoogle Scholar
  19. 19.
    D.S. Kim, T. Kim, A note on Boole polynomials. Integral Transforms Spec. Funct. 25(8), 627–633 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    T. Kim, S.-H. Lee, T. Mansour, J.-J. Seo, A note on q -Daehee polynomials and numbers. Adv. Stud. Contemp. Math. 24(2), 155–160 (2014)zbMATHGoogle Scholar
  21. 21.
    D.S. Kim, T. Kim, J.J. Seo, A note on q-analogue of Boole polynomials. Appl. Math. Inf. Sci. 9(6), 3153–3158 (2015)MathSciNetGoogle Scholar
  22. 22.
    N. Koblitz, p-Adic Numbers, p-Adic Analysis, and Zeta Functions (Springer, New York, 1977)zbMATHCrossRefGoogle Scholar
  23. 23.
    J. Kwon, J.-W. Park, A note on \(\left ( h,q\right ) \)-Boole polynomials. Adv. Differ. Equ. 2015, 198 (2015). https://doi.org/10.1186/s13662-015-0536-1
  24. 24.
    H. Ozden, I.N. Cangul, Y. Sımsek, Remarks on q -Bernoulli numbers associated with Daehee numbers. Adv. Stud. Contemp. Math. 18(1), 41–48 (2009)MathSciNetzbMATHGoogle Scholar
  25. 25.
    A.M. Robert, A Course in p-Adic Analysis (Springer, New York, 2000)zbMATHCrossRefGoogle Scholar
  26. 26.
    C.S. Ryoo, Symmetric identities for Carlitz’s twisted q -Bernoulli polynomials associated with p-adic q-integral on \( \mathbb {Z} _{p}\). Appl. Math. Sci. 9(72), 3569–3575 (2015)Google Scholar
  27. 27.
    W.H. Schikhof, Ultrametric Calculus: An Introduction to p-Adic Analysis. Cambridge Studies in Advanced Mathematics, vol. 4 (Cambridge University Press, Cambridge, 1984)Google Scholar
  28. 28.
    Y. Simsek, A. Yardimci, Applications on the Apostol-Daehee numbers and polynomials associated with special numbers, polynomials, and p -adic integrals. Adv. Differ. Equ. 308 (2016). https://doi.org/10.1186/s13662-016-1041-x
  29. 29.
    A. Volkenborn, Ein p-adisches integral und seine Anwendungen I. Manuscripta Math. 7(4), 341–373 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    A. Volkenborn, Ein p-adisches integral und seine Anwendungen II. Manuscripta Math. 12(1), 17–46 (1974)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of the Basic Concepts of Engineering, Faculty of Engineering and Natural Sciencesİskenderun Technical UniversityHatayTurkey
  2. 2.Department of MathematicsGauhati UniversityGuwahatiIndia

Personalised recommendations