Introduction to Thin Film Physics

  • Jennifer FowlieEmail author
Part of the Springer Theses book series (Springer Theses)


A thin film is simply a solid material but with the third (out-of-plane) dimension greatly reduced with respect to the first two (in-plane) dimensions. Perhaps an important question to address is; how thin is a thin film? In the fundamental research of perovskite oxides, a thin film could be defined as one where the film thickness starts to be on the same order of magnitude as the relevant length scales for the physics, leading to a definition of the dimensionality that depends upon the phenomena in question and can vary. An example would be a “3-D” conductor that becomes a “2-D” superconductor because the elastic scattering length is shorter than the superconducting coherence length.


  1. 1.
    Lu D, Baek D, Hong SS, Kourkoutis LF, Hikita Y, Hwang HY (2016) Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat Mater 15:1255–1260Google Scholar
  2. 2.
    Zubko P, Gariglio S, Gabay M, Ghosez P, Triscone J-M (2011) Interface physics in complex oxide Heterostructures. Annu Rev Condens Matter Phys 2(1):141–165Google Scholar
  3. 3.
    Hwang HY, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y (2012) Emergent phenomena at oxide interfaces. Nat Mater 11(2):103–113ADSCrossRefGoogle Scholar
  4. 4.
    Aschauer U, Pfenninger R, Selbach SM, Grande T, Spaldin NA (2013) Strain-controlled oxygen vacancy formation and ordering in CaMnO\(_3\). Phys Rev B - Condens Matter Mater Phys 88(5):1–7Google Scholar
  5. 5.
    Gibert M, Viret M, Torres-Pardo A, Piamonteze C, Zubko P, Jaouen N, Tonnerre JM, Mougin A, Fowlie J, Catalano S, Gloter A, Stéphan O, Triscone JM (2015) Interfacial control of magnetic properties at LaMnO\(_3\)/LaNiO\(_3\) interfaces. Nano Lett 15(11):7355–7361ADSCrossRefGoogle Scholar
  6. 6.
    Aso R, Kan D, Shimakawa Y, Kurata H (2013) Atomic level observation of octahedral distortions at the perovskite oxide heterointerface. Sci Rep 3:1–6Google Scholar
  7. 7.
    Vailionis A, Boschker H, Liao Z, Smit JRA, Rijnders G, Huijben M, Koster G (2014) Symmetry and lattice mismatch induced strain accommodation near and away from correlated perovskite interfaces. Appl Phys Lett 105(13):0–5CrossRefGoogle Scholar
  8. 8.
    Goniakowski J, Finocchi F, Noguera C (2008) Polarity of oxide surfaces and nanostructures. Reports Prog Phys 71(1):016501Google Scholar
  9. 9.
    Ohtomo A, Hwang HY (2004) A high-mobility electron gas at the LAO/STO heterointerface. Nature 427(6973):423–426ADSCrossRefGoogle Scholar
  10. 10.
    Reyren N, Thiel S, Caviglia AD, Fitting Kourkoutis L, Hammerl G, Richter C, Schneider CW, Kopp T, Ruetschi A-S, Jaccard D, Gabay M, Muller DA, Triscone J-M, Mannhart J (2007) Superconducting interfaces between insulating oxides. Science (80-.) 317:1196–1199Google Scholar
  11. 11.
    Renshaw Wang X, Li CJ, Lü WM, Paudel TR, Leusink DP, Hoek M, Poccia N, Vailionis A, Venkatesan T, Coey JMD, Tsymbal EY, Ariando, Hilgenkamp H (2015) Imaging and control of ferromagnetism in LaMnO\(_3\)/SrTiO\(_3\) heterostructures. Science (80-.) 349(6249):716–719Google Scholar
  12. 12.
    Mannhart J, Schlom DG (2010) Oxide interfaces—an opportunity for electronics. Science (80-.) 327(5973):1607 LP–1611Google Scholar
  13. 13.
    Yu P, Chu YH, Ramesh R (2012) Oxide interfaces: pathways to novel phenomena. Mater Today 15(7-8):320–327Google Scholar
  14. 14.
    Ngai JH, Walker FJ, Ahn CH (2014) Correlated oxide physics and electronics. Annu Rev Mater Res 44(1):1–17Google Scholar
  15. 15.
    Kalantar-zadeh K, Ou JZ, Daeneke T, Mitchell A, Sasaki T, Fuhrer MS (2016) Two dimensional and layered transition metal oxides. Appl Mater Today 5:73–89Google Scholar
  16. 16.
    Lorenz M, Ramachandra Rao MS, Venkatesan T, Fortunato E, Barquinha P, Branquinho R, Salgueiro D, Martins R, Carlos E, Liu A, Shan FK, Grundmann M, Boschker H, Mukherjee J, Priyadarshini M, DasGupta N, Rogers DJ, Teherani FH, Sandana EV, Bove P, Rietwyk K, Zaban A, Veziridis A, Weidenkaff A, Muralidhar M, Murakami M, Abel S, Fompeyrine J, Zuniga-Perez J, Ramesh R, Spaldin NA, Ostanin S, Borisov V, Mertig I, Lazenka V, Srinivasan G, Prellier W, Uchida M, Kawasaki M, Pentcheva R, Gegenwart P, Miletto Granozio F, Fontcuberta J, Pryds N (2016) The 2016 oxide electronic materials and oxide interfaces roadmap. J Phys D Appl Phys 49(43):433001Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Quantum Matter PhysicsUniversity of GenevaGenevaSwitzerland

Personalised recommendations