Introduction to Perovskite Oxides

  • Jennifer FowlieEmail author
Part of the Springer Theses book series (Springer Theses)


Perovskite, with the chemical formula CaTiO\(_3\), was discovered in 1839 in the Urals. It has a structure consisting of a cage of six oxygen anions surrounding the titanium cation in an octahedron.


  1. 1.
    Mitchell RH (2003) Perovskites: modern and ancient. Almaz, CanadaGoogle Scholar
  2. 2.
    Khomskii DI (2014) Transition metal compounds. Cambridge University PressGoogle Scholar
  3. 3.
    Glazer AM (1975) Simple ways of determining perovskite structures. Acta Crystallogr Sect A 31(6):756–762ADSCrossRefGoogle Scholar
  4. 4.
    Howard CJ, Stokes HT (1998) Group-theoretical analysis of octahedral tilting in perovskites. Acta Crystallogr Sect B Struct Sci 54:782–789CrossRefGoogle Scholar
  5. 5.
    Goodenough JB (2004) Electronic and ionic transport properties and other physical aspects of perovskites. Rep Prog Phys 67(11):1915–1993ADSCrossRefGoogle Scholar
  6. 6.
    Kozlenko DP, Golosova NO, Jirák Z, Dubrovinsky LS, Savenko BN, Tucker MG, Le Godec Y, Glazkov VP (2007) Temperature-and pressure-driven spin-state transitions in LaCoO\(_3\). Phys Rev B Condens Matter Mater Phys 75(6):1–10CrossRefGoogle Scholar
  7. 7.
    Tokura Y, Nagaosa N (2000) Orbital physics in transition metal oxides. Science 288:462–468ADSCrossRefGoogle Scholar
  8. 8.
    Goodenough JB, Zhou J-S (2007) Orbital ordering in orthorhombic perovskites. J Mater Chem 17(23):2394CrossRefGoogle Scholar
  9. 9.
    Sawatzky GA, Geertsma W, Haas C (1976) Magnetic interactions and covalency effects in mainly ionic compounds. J Magn Magn Mater 3(1–2):37–45ADSCrossRefGoogle Scholar
  10. 10.
    Harrison WA (1990) Electronic structure and the properties of solids: the physics of the chemical bond. Dover Publications, USGoogle Scholar
  11. 11.
    Okimoto Y, Katsufuji T, Okada Y, Arima T, Tokura Y (1995) Optical spectra in (La, Y)TiO\(_3\): variation of Mott-Hubbard gap features with change of electron correlation and band filling. Phys Rev B 51(15):9581–9588ADSCrossRefGoogle Scholar
  12. 12.
    Zaanen J, Sawatzky GA, Allen JW (1985) Band gaps and electronic structure of transition-metal compounds. Phys Rev Lett 55(4):418–421ADSCrossRefGoogle Scholar
  13. 13.
    Mizokawa T, Namatame H, Fujimori A, Akeyama K, Kondoh H, Kuroda H, Kosugi N (1991) Origin of the band gap in the negative charge-transfer-energy compound NaCuO\(_2\). Phys Rev Lett 67(12):1638–1641ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Quantum Matter PhysicsUniversity of GenevaGenevaSwitzerland

Personalised recommendations