Ectomycorrhizal Fungi in South America: Their Diversity in Past, Present and Future Research

  • Eduardo R. Nouhra
  • Götz Palfner
  • Francisco Kuhar
  • Nicolás Pastor
  • Matthew E. Smith
Part of the Fungal Biology book series (FUNGBIO)


This chapter compiles data on various aspects of ectomycorrhizal fungal taxa research, carried out in South America (SA) since the first studies in the early 1900. Early research was achieved by foreign mycologists and the development of the first biological research centers in the region. The diversity of fungal taxa and data on the associated plant hosts and ecosystems are described based on biological and phytogeographic characteristics. Most publications on the topic were revised, the ectomycorrhizal lineages registered and species richness estimated based on fruiting bodies records and sequence data, derived from root tips of ectomycorrhizal hosts as well as OTU sequences from metabarcoding analysis. The review compiles previous and recent data for various areas of interest along the Andes, Guiana, Amazonian basin and the northeastern coast of SA. Additional research aspects such as physiology, cellular biology, chemistry, chemotaxonomy and mycosociology are briefly addressed.


Ectomycorrhizae Diversity Richness Neotropics Patagonia Andes 


  1. Agerer R (1991) Characterization of ectomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Techniques for the study of mycorrhiza, Methods Microbiology 23, Academic Press, London, p 25–73CrossRefGoogle Scholar
  2. Agerer R (1996) Characterization of ectomycorrhizae: a historical overview. Descr Ectomyc 1: 1–22Google Scholar
  3. Alberdi M, Alvarez M, Valenzuela E, Godoy R, Olivares E, Barrientos M (2007) Response to water deficit of Nothofagus dombeyi plants inoculated with a specific (Descolea antarctica Sing) and non-specific (Pisolithus tinctorius (Pers.) Coker & Couch) ectomycorrhizal fungi. Rev Chil Hist Nat 80: 479–491Google Scholar
  4. Alvarez M, Godoy R, Heyser W, Härtel S (2004) Surface-bound phosphatase activity in living hyphae of ectomycorrhizal fungi of Nothofagus obliqua. Mycologia 96(3): 479–487PubMedCrossRefPubMedCentralGoogle Scholar
  5. Alvarez M, Huygens D, Fernandez C, Gacitua Y, Olivares E, Saavedra I, Alberdi M, Valenzuela E (2009) Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots. Tree Physiol 29: 1047–1057PubMedCrossRefPubMedCentralGoogle Scholar
  6. Argüelles-Moyao A, Garibay-Orijel R, Márquez-Valdelamar LM, Arellano-Torres E (2017) Clavulina-Membranomyces is the most important lineage within the highly diverse ectomycorrhizal fungal community of Abies religiosa. Mycorrhiza 27(1): 53–65PubMedCrossRefPubMedCentralGoogle Scholar
  7. Arnold N, Palfner G, Schmidt J, Kuhnt C, Becerra J (2012) Chemistry of the aroma bouquet of the edible mushroom “lebre” (Cortinarius lebre, Basdiomycota, Agaricales) from Chile. J Chil Chem Soc 58(3): 1333–1335CrossRefGoogle Scholar
  8. Becerra A, Daniele G, Domínguez L, Nouhra E, Horton T (2002) Ectomycorrhizae between Alnus acuminata H.B.K. and Naucoria escharoides (Fr.: Fr.) Kummer from Argentina. Mycorrhiza 12: 61–66PubMedCrossRefPubMedCentralGoogle Scholar
  9. Becerra A, Nouhra E, Daniele G, Domínguez L, McKay D (2005a) Ectomycorrhizas of Cortinarius helodes and Gyrodon monticola with Alnus acuminata from Argentina. Mycorrhiza 15: 7–15PubMedCrossRefPubMedCentralGoogle Scholar
  10. Becerra A, Pritsch K, Arrigo N, Palma M, Bartoloni N (2005b) Ectomycorrhizal colonization of Alnus acuminata Kunth in northwestern Argentina in relation to season and soil parameters. Ann For Sci 62: 325–332CrossRefGoogle Scholar
  11. Becerra A, Beenken L, Pritsch K, Daniele G, Schloter M, Agerer R (2005c) Anatomical and molecular characterization of Lactarius aff. omphaliformis, Russula alnijorullensis and Cortinarius tucumanensis ectomycorrhizae on Alnus acuminata. Mycologia 95: 1047–1057CrossRefGoogle Scholar
  12. Becerra A, Zak MR, Horton TR, Micolini J (2005d) Ectomycorrhizal and arbuscular mycorrhizal colonization of Alnus acuminata from Calilegua National Park (Argentina). Mycorrhiza 15: 525–531PubMedCrossRefPubMedCentralGoogle Scholar
  13. Becerra A, Nouhra E, Silva M, McKay D (2009) Ectomycorrhizae, arbuscular mycorrhizae and dark septate fungi on Salix humboldtiana Willd. from Central Argentina: a first assessment in two riparian populations. Mycoscience 50: 343–352CrossRefGoogle Scholar
  14. Bresinsky A, Jarosch M, Fischer M, Schönberger I, Wittmann-Bresinsky B (1999) Phylogenetic relationships within Paxillus s. l. (Basidiomycetes, Boletales): Separation of a Southern Hemisphere genus. Plant Biol 1 (3): 327–333CrossRefGoogle Scholar
  15. Carrillo R, Godoy R, Peredo H (1992) Simbiosis micorrícica en comunidades boscosas del Valle Central en el sur de Chile. Bosque 13(2): 57–67CrossRefGoogle Scholar
  16. Carú M, Becerra A, Sepúlveda D, Cabello A (2000) Isolation of infective and effective Frankia strains from root nodules of Alnus acuminata (Betulaceae). World J Microbiol Biotechnol 16: 647–651CrossRefGoogle Scholar
  17. Chen ZD, Li JH (2004) Phylogenetics and biogeography of Alnus (Betulaceae) inferred from sequences of nuclear ribosomal DNA its region. Int J Plant Sci 165: 325–335CrossRefGoogle Scholar
  18. Chilvers GA (1968) Some distinctive types of eucalypt mycorrhiza. Aust J Bot 16: 49–70CrossRefGoogle Scholar
  19. Corrales A, Henkel TW, Smith ME (2018) Ectomycorrhizal associations in the tropics – biogeography, diversity patterns and ecosystem roles. New Phytol online, CrossRefGoogle Scholar
  20. Dominik T (1969) Key to ectotrophic mycorrhizae. Folia For Pol. Seria A 15: 309–328Google Scholar
  21. Espinosa MR (1915) Hongo nuevo chileno el loyo Boletus loyus Espinosa, n. sp. Bol Mus Nac Hist Nat Bol (Chile) 8: 5–1Google Scholar
  22. Fernández NV, Marchelli P, Fontenla SB (2013) Ectomycorrhizas naturally established in Nothofagus nervosa seedlings under different cultivation practices in a forest nursery. Microb Ecol 66(3): 581–592PubMedCrossRefPubMedCentralGoogle Scholar
  23. Flores R, Godoy R, Palfner G (1997) Morfo – anatomía de la ectomicorriza Cenococcum geophilum Fr. en Nothofagus alessandrii Esp. Gayana Bot 54(2): 157–167Google Scholar
  24. Fontenla S, Godoy R, Rosso P, Havrylenko M (1998) Root associations in Austrocedrus forests and seasonal dynamics of arbuscular mycorrhizas. Mycorrhiza 8: 29–33CrossRefGoogle Scholar
  25. Founoune H, Duponnois R, Bâd AM, El Bouamib F (2002). Influence of the dual arbuscular endomycorrhizal / ectomycorrhizal symbiosis on the growth of Acacia holosericea (A. Cunn. ex G. Don) in glasshouse conditions. Ann For Scie 59: 93–98CrossRefGoogle Scholar
  26. Frank AB (1885) Ueber die Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Berichte der Deutschen Botanischen Gesellschaft 3: 128–145Google Scholar
  27. Freire CG, Giachini AJ, Gardin JP, Rodrigues AC, Vieira RL, Baratto CM, Werner SS, Abreu BH (2018) First record of in vitro formation of ectomycorrhizae in Psidium cattleianum Sabine, a native Myrtaceae of the Brazilian Atlantic Forest. PloS one, 13(5), p.e0196984PubMedPubMedCentralCrossRefGoogle Scholar
  28. Furlow JJ (1979) The systematics of the American species of Alnus (Betulaceae). I. Rhodora 81: 1–121Google Scholar
  29. Gamundí IJ (2010) Genera of Pezizales of Argentina 1. An updating of selected genera. Mycotaxon 113.1: 1–60CrossRefGoogle Scholar
  30. Gamundí IJ, de Halperín DR (1960) Flora criptogámica de Tierra del Fuego. Fundación para la Educación, la Ciencia y la Cultura, FECIC, Buenos AiresGoogle Scholar
  31. Gamundí IJ, Minter DW, Romero AI, Barrera VA, Giaiotti AL, Messuti MI, Stecconi M (2004) Checklist of the Discomycetes (Fungi) of Patagonia, Tierra del Fuego and adjacent Antarctic areas. Darwiniana 42: 63–164Google Scholar
  32. Garnica S, Weiss M, Oberwinkler F (2002) New Cortinarius species from Nothofagus Forests in South Chile. Mycologia 94 (1): 136–145PubMedCrossRefPubMedCentralGoogle Scholar
  33. Garnica S, Weiss M, Oberwinkler F (2003) Morphological and molecular phylogenetic studies in South American Cortinarius species. Mycol Res 107 (10): 1143–1156PubMedCrossRefPubMedCentralGoogle Scholar
  34. Garrido N (1986) Survey of ectomycorrhizal fungi associated with exotic forests trees in Chile. Nova Hedwigia 43(3–4): 423–442Google Scholar
  35. Garrido N (1988) Agaricales sl und ihre Mykorrhizen in den Nothofagus-Wäldern MittelchilesGoogle Scholar
  36. Gentry AH (1982) Neotropical floristic diversity: Phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Ann Mo Bot Gard 69 (3):557–593CrossRefGoogle Scholar
  37. Geml J, Pastor N, Fernández L, Pacheco S, Semenova T, Becerra AG, Wicaksono CY, Nouhra ER (2014) Large-scale fungal diversity assessment in the Andean Yungas forests reveals strong community turnover among forest types along an altitudinal gradient. Molecular Ecology 23: 2452–2472CrossRefGoogle Scholar
  38. Godoy R, Palfner G (1997) Ectomicorrizas en Nothofagus alpina (Poepp. & Endl.) Oerst. y N. dombeyi (Mirb. Oerst.) del sur de Chile. Boletín Micológico 12(1–2):55–61CrossRefGoogle Scholar
  39. Godoy R, Romero R, Carrillo R (1994) Estatus micotrófico de la flora vascular en bosques de coníferas nativas del sur de Chile. Rev Chil Hist Nat 67: 209–220Google Scholar
  40. Greff A, Porzel A, Schmidt J, Palfner G, Arnold N (2017) Pigment pattern of the Chilean mushroom Dermocybe nahuelbutensis Garrido & E. Horak. Records of Natural Products 11(6):547–551CrossRefGoogle Scholar
  41. Greslebin AG (2002) Flora Criptogámica de Tierra del Fuego. Fungi, Basidiomycota, Aphyllophorales: Coniophoraceae, Corticiaceae, Gomphaceae, Hymenochaetaceae, Lachnocladiaceae, Stereaceae, Thelephoraceae. Tulasnellales: Tulasnellaceae, FECIC, Buenos AiresGoogle Scholar
  42. Gruber I (1975) Papierchromatographische Pigmentanalyse von südamerikanischen Dermocyben und Cortinarien. In: Moser M, Horak E (eds) Cortinarius Fr. und naheverwandte Gattungen in Südamerika, Beih. Nova Hewigia 52: 524–540Google Scholar
  43. Halling RE (1989) A synopsis of Colombian boletes. Mycotaxon 34: 93–113Google Scholar
  44. Halling RE (1996) Boletaceae (Agaricales): Latitudinal biodiversity and biological interactions in Costa Rica and Colombia. Revista de Biologia Tropical 44(4): 111–114Google Scholar
  45. Halling RE (2001) Ectomycorrhizae: Co-Evolution, Significance, and Biogeography. Annals of the Missouri Botanical Garden 88: 5–13CrossRefGoogle Scholar
  46. Halling RE, Mueller G (1999) New boletes from Costa Rica. Mycologia 91: 893–899CrossRefGoogle Scholar
  47. Harley JL (1959) The Biology of Mycorrhiza. Plant Science Monographs, Leonard Hill, London, U.K., 233 pGoogle Scholar
  48. Hauenstein E, González M, Peña-Cortés F, Muñoz-Pedreros A (2005) Diversidad vegetal en humedales costeros de la Región de La Araucanía. In: Smith-Ramírez C, Armesto JJ, Valdovinos C (eds) Historia, biodiversidad y ecología de los bosques costeros de Chile. Santiago: Editorial Universitaria, p 197–205.Google Scholar
  49. Haug I, Weis M, Homeier J, Oberwinkler F, Kottke I (2005) Russulaceae and Thelephoraceae form ectomycorrhizas with members of the Nyctaginaceae (Caryophyllales) in the tropical mountain rainforest of southern Ecuador. New Phytol 165: 923–936PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95: 641–655CrossRefGoogle Scholar
  51. Henkel TW, Terborgh J, Vilgalys RJ (2002) Ectomycorrhizal fungi and their leguminous hosts in the Pakaraima Mountains of Guyana. Mycol Res 106(5):515–531CrossRefGoogle Scholar
  52. Henkel TW (2003). Monodominance in the ectomycorrhizal Dicymbe corymbosa (Caesalpiniaceae) from Guyana. Journal of Tropical Ecology 19: 417–437CrossRefGoogle Scholar
  53. Henkel TW, Aime MC, Chin MML, Miller S, Vilgalys R, Smith M (2012) Ectomycorrhizal fungal sporocarp diversity and discovery of new taxa in Dicymbe monodominant forests of the Guiana Shield. Biodiversity and Conservation 21: 2195–2220CrossRefGoogle Scholar
  54. Hoorn C, Flantua S (2015) An early start for the Panama land bridge. Science 348 (6231): 186–187PubMedCrossRefPubMedCentralGoogle Scholar
  55. Horak E (1979) Flora criptogámica de Tierra del Fuego. Fungi: Basidiomycetes agaricales y Gasteromycetes secotioides, 11, FECIC, Buenos AiresGoogle Scholar
  56. Horak E, Moser M (1965) Fungi Austroamericani XII. Studien zur Gattung Thaxterogaster Sing. Nova Hedwigia 10: 211–241Google Scholar
  57. Horak E, Moser M (1975) Cortinarius Fr. und nahe verwandte Gattungen in Sudamerika. Beihefte zur. Nova Hedwigia 52: 1–607Google Scholar
  58. Kappelle M, Cleef AM, Chaverri A (1992) Phytogeography of Talamanca montane Quercus forest, Costa Rica. Journal of Biogeography 19: 299–315CrossRefGoogle Scholar
  59. Keller G, Moser M, Horak E, Steglich W (1987) Chemotaxonomic investigation of species of Dermocybe (Fr.) Wünsche (Agaricales) from New Zealand, Papua New Guinea and Argentina. Sydowia 40: 168–187Google Scholar
  60. Kennedy P, Garibay-Orijel R, Higgins L, Angeles-Arguiz R (2011) Ectomycorrhizal fungi in Mexican Alnus forests support the host co-migration hypothesis and continental-scale patterns in phylogeography. Mycorrhiza 21(6):559–568CrossRefGoogle Scholar
  61. Kennedy PG, Matheny PB, Henkel TW, Uehling JK, Smith ME, Ryberg M (2012) Scaling up: examining the macroecology of ectomycorrhizal fungi. Mol Ecol 21: 4151–4154PubMedCrossRefPubMedCentralGoogle Scholar
  62. Kuhar F, Barroetaveña C, Rajchenberg M (2016) New species of Tomentella (Thelephorales) from the Patagonian Andes forests. Mycologia 108(4): 780–790PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kuhar F, Smith ME, Mujic A, Truong C, Nouhra E (2017) A systematic overview of Descolea (Agaricales) in the Nothofagaceae forests of Patagonia. Fungal Biol 121 (10): 876–889PubMedCrossRefPubMedCentralGoogle Scholar
  64. Lam HYT, Palfner G, Lima C, Porzel A, Brandt W, Frolov A, Wagner C, Merzweiler K, Wessjohann LA, Arnold N (2018) Nor-guanacastepene pigments from the Chilean mushroom Cortinarius pyromyxa. Journal of Natural Products (submitted)Google Scholar
  65. Lindahl BD, Tunlid A (2015) Ectomycorrhizal fungi–potential organic matter decomposers, yet not saprotrophs. New Phytol 205(4): 1443–1447PubMedCrossRefPubMedCentralGoogle Scholar
  66. Longo MS, Urcelay C, Nouhra E (2011) Long term effects of fire on ectomycorrhizas and soil properties in Nothofagus pumilio forests in Argentina. Forest ecology and management 262(3): 348–354CrossRefGoogle Scholar
  67. López-Quintero CA, Straatsma G, Franco-Molano AE, Boekhout T (2012) Macrofungal diversity in Colombian Amazon forests varies with regions and regimes of disturbance. Biodivers Conserv 21: 2221–2243CrossRefGoogle Scholar
  68. Lugo MA, Becerra AG, Nouhra ER, Ochoa AC (2012) Mycorrhizal diversity in native and exotic willows (Salix humboldtiana and S. alba) in Argentina. In: Pagano M (ed) Mycorrhiza: Occurrence in Natural and Restored Environments. Nova Science Publishers, New York, p 201–222Google Scholar
  69. Marín C, Valenzuela E, Godoy R, Palfner G (2018) Diversity and growth-effects of ectomycorrhizal fungi of a Nothofagus pumilio forest in the Andes of Southern Chile. Boletín Micológico 33(1): 9–20CrossRefGoogle Scholar
  70. Melin E (1925) Untersuchungen über die Bedeutung der Baummykorrhiza. Eine ökologisch-physiologische Studie. Gustav Fischer, Jena, 152 pGoogle Scholar
  71. Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 357–423Google Scholar
  72. Moser M, Horak E, Gruber I (1975) Cortinarius Fr. und nahe verwandte Gattungen in Südamerika. Beihefte zur Nova Hedwigia 52: 1–628Google Scholar
  73. Moyersoen B (1993) Ectomicorrizas y micorrizas vesículo-arbusculares en Caatinga Amazónica del Sur de Venezuela. Sci Guaianae (Caracas) 3: 1–82Google Scholar
  74. Moyersoen B, Fitter A, Alexander I (1998a) Spatial distribution of ectomycorrhizas and arbuscular mycorrhizas in Korup National Park rainforest, Cameroon, in relation to edaphic parameters. New Phytol 139(2): 311–320CrossRefGoogle Scholar
  75. Moyersoen B, Alexander I, Fitter A (1998b) Phosphorus nutrition of ectomycorrhizal and arbuscular mycorrhizal tree seedlings from a lowland tropical rain forest in Korup National Park, Cameroon. J Trop Ecol 14(1): 47–61CrossRefGoogle Scholar
  76. Moyersoen B, Becker P, Alexander I (2001). Are ectomycorrhizas more abundant than arbuscular mycorrhizas in tropical heath forests? New Phytol (2001) 150: 591–599CrossRefGoogle Scholar
  77. Mueller GM, Halling R (1995) Evidence for high biodiversity of Agaricales (Fungi) in Neotropical montane Quercus forests. In: Churchill S, Balslev H, Forero E, Luteyn J (eds) Biodiversity and Conservation of Neotropical Montane Forests, New York Botanical Garden, Bronx, p 303–312Google Scholar
  78. Muller GM, Singer R (1988) Laccaria gomezii, a new agaric species from the querceta of Colombia and Costa Rica. Mycotaxon 33: 223–227Google Scholar
  79. Muller G, Strack BA (1992) Evidence for a mycorrhizal host shift during migration of Laccaria trichodermophora and other agarics into Neotropical oak forests. Mycotaxon 45: 249–256Google Scholar
  80. NAS (National Academy of Sciences) (1980) Firewood Crops: Shrub and Tree Species for Energy Production. Report of an ad hoc panel of the Advisory Committee on Technology Innovation, Board on Science and Technology for International Development, Commission on International Relations National Research Council (U.S.). Advisory Committee on Technology Innovation, National Academy Press, Washington DCGoogle Scholar
  81. Navarro E, Bousquet J, Moiroud A, Munive A, Piou D, Normand P (2003) Molecular phylogeny of Alnus (Betulaceae), inferred from nuclear ribosomal DNA ITS sequences. Plant Soil 254: 207–217CrossRefGoogle Scholar
  82. Niveiro N (2012) Agaricales sensu lato (Agaricomycetes) de las Selvas del Dominio Amazónico de la Argentina. Diversidad, Distribución y Abundancia. Tesis Doctoral. Universidad Nacional de CórdobaGoogle Scholar
  83. Nouhra ER, Domínguez L, Becerra A, Mangeaud A (2003) Colonización micorrícica y actinorrícica en plantines de Alnus acuminata (Betulaceae), cultivados en suelos nativos de Alnus rubra. Bol Soc Argent Bot 38: 199–206Google Scholar
  84. Nouhra ER, Domínguez L, Becerra AG, Trappe JM (2005) Morphological, molecular and ecological aspects of the South American hypogeous fungus Alpova austroalnicola sp. nov. Mycologia 97: 598–604PubMedCrossRefPubMedCentralGoogle Scholar
  85. Nouhra ER, Domínguez L, Urcelay C, Becerra AG (2008) Mycorrhizal status of Fagara coco (Rutaceae): does it form ectomycorrhizas with Phlebopus bruchii (Boletaceae)? Symbiosis 46: 113–120Google Scholar
  86. Nouhra ER, Urcelay C, Longo MS, Fontenla S (2012) Differential hypogeous sporocarp production from Nothofagus dombeyi and N. pumilio forests in southern Argentina. Mycologia 104(1): 45–52PubMedCrossRefPubMedCentralGoogle Scholar
  87. Nouhra ER, Urcelay C, Longo S, Tedersoo L (2013) Ectomycorrhizal fungal communities associated to Nothofagus species in Northern Patagonia. Mycorrhiza 23(6): 487–496CrossRefGoogle Scholar
  88. Nouhra ER, Pastor N, Becerra A, Sarrionandia Areitio E, Geml J (2015) Greenhouse grown seedlings of Alnus species showed lack of specificity and a strong preference for Tomentella ectomycorrhizal associates. Microb Ecol 69: 813–825PubMedCrossRefPubMedCentralGoogle Scholar
  89. Onguene N, Kuyper T (2002) Importance of the ectomycorrhizal network for seedling survival and ectomycorrhiza formation in rain forests of south Cameroon. Mycorrhiza 12: 13–17CrossRefGoogle Scholar
  90. Palfner G (2001) Taxonomische Studien an Ektomykorrhizen aus den-Nothofagus-Wäldern MittelsüdchilesGoogle Scholar
  91. Palfner G, Casanova-Katny A (2018) Comparación de las micocenosis de remanentes de bosque nativo y plantaciones forestales en la península de Arauco, Región del Biobío, con énfasis en aspectos funcionales y de conservación. In: Smith-Ramirez C, Armesto JJ, Valdovinos C (eds) Historia, biodiversidad y ecología de los bosques costeros de Chile. 2nd edition, Editorial Universitaria, Santiago, Chile (in press)Google Scholar
  92. Pastor N, Chiapella J, Kuhar F, Mujic A, Crespo E, Nouhra R. (2019) Unveiling new sequestrate Cortinarius species from northern Patagonian Nothofagaceae forests based on molecular and morphological data. Mycologia 111(1): 103–117PubMedCrossRefPubMedCentralGoogle Scholar
  93. Põlme S, Bahram M, Yamanaka T, Nara K, Dai YC, Grebenc T, Kraigher H, Toivonen M, Wang PH, Matsuda Y, Naadel T, Kennedy PG, Koljalg U, Tedersoo L (2013) Biogeography of ectomycorrhizal fungi associated with alders (Alnus spp.) in relation to biotic and abiotic variables at the global scale. New Phytol 198: 1239–1249PubMedCrossRefPubMedCentralGoogle Scholar
  94. Pritsch K, Becerra A, Polme S, Tedersoo L (2010) Description and identification of Alnus acuminata ectomycorrhizae from Argentinean alder stands. Mycologia 102: 1263–1273PubMedCrossRefPubMedCentralGoogle Scholar
  95. Redhead SA, Malloch DW (1986) The genus Phaeocollybia (Agaricales) in eastern Canada and its biological status. Can J Bot 64(6): 1249–1254CrossRefGoogle Scholar
  96. Ragonese A. (1987). Familia Salicaceae. Flora Ilustrada de Entre Ríos, III. Colección Científica del INTA. Tomo VI, Buenos Aires, p 6–14Google Scholar
  97. Ren BQ, Xiang XG, Chen ZD (2010) Species identification of Alnus (Betulaceae) using nrDNA and cpDNA genetic markers. Mol Ecol Resour 10: 594–605PubMedCrossRefPubMedCentralGoogle Scholar
  98. Riviere T, Diedhiou A, Diabate M, Senthilarasu G, Natarajan K, Verbeken A, Buyck B, Dreyfus B, Bena G, Ba A (2007) Genetic diversity of ectomycorrhizal Basidiomycetes from African and Indian tropical rain forests. Mycorrhiza 17: 415–428CrossRefGoogle Scholar
  99. Romano GM, Greslebin AG, Lechner BE. (2017a) Modelling agaricoid fungi distribution in Andean forests of Patagonia. Nova Hedwigia 105(1–2): 95–120CrossRefGoogle Scholar
  100. Romano GM, Ruiz EV, Lechner BE, Greslebin AG, Morrone JJ (2017b) Track analysis of agaricoid fungi of the Patagonian forests. Aust Syst Bot 29(6): 440–446CrossRefGoogle Scholar
  101. Roy S, Khasa DP, Greer CW (2007) Combining alders, frankiae, and mycorrhizae for the revegetation and remediation of contaminated ecosystems. Can J Bot 85: 237–251CrossRefGoogle Scholar
  102. Roy M, Schimann H, Braga Neto R, Da Silva RA, Duque J, Frame D, Wartchow F, Neves MA (2016) Diversity and distribution of ectomycorrhizal fungi from Amazonian lowland white sand forests in Brazil and French Guiana. Biotropica 48(1): 90–100CrossRefGoogle Scholar
  103. Salazar VE (2016) Micosociología: antecedentes históricos, evolución y proyecciones. Boletín Micológico 31(2): 23–35Google Scholar
  104. Salgado Salomón ME, Barroetaveña C, Rajchenberg M (2013) Occurrence of dark septate endophytes in Nothofagus seedlings from Patagonia, Argentina. Southern Forests: a Journal of Forest Science 75(2): 97–101CrossRefGoogle Scholar
  105. Salgado Salomon ME, Dreschdm P, Horak E, Galleguillos F, Barroetaveña C, Peintner U (2018) The enigmatic Cortinarius magellanicus complex occurring in Nothofagaceae forests of the Southern Hemisphere. Fungal Biol 122: 1077–1097PubMedCrossRefPubMedCentralGoogle Scholar
  106. Sánchez-García M, Henkel TW, Aime MC, Smith ME, Matheny PB (2016) Guyanagarika, a new ectomycorrhizal genus of Agaricales from the Neotropics. Fungal Biol 120(12): 1540–1553PubMedCrossRefPubMedCentralGoogle Scholar
  107. Sanmartin I, Ronquist F (2004) Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns. Systematic biology 53(2): 216–243PubMedCrossRefPubMedCentralGoogle Scholar
  108. Singer R (1950) Descolea antarctica, género y especie nuevos de Tierra del Fuego. Lilloa 23: 255–258Google Scholar
  109. Singer R (1954) Agaricales von Nahuel Huapi. Sydowia 8: 100–157Google Scholar
  110. Singer R (1963) Oak mycorrhiza fungi in Colombia. Mycopathol Mycol Appl 20 (3–4): 239–252CrossRefGoogle Scholar
  111. Singer R (1971) Forest mycology and communities in South America II. Mycorrhiza sociology and fungus succession in the Nothofagus-Austrocedrus chilensis Woods of Patagonia. In: Hacskaylor R (ed) Proceedings of the First North American Conference on Mycorrhizae – USDA Forest Service Publication 1189: 204–215Google Scholar
  112. Singer R, Araujo I (1979) Litter decomposition and Ectomycorrhiza in Amazonian forests. A comparison of litter decomposing and ectomycorrhizal Basidiomycetes in latosol-terra-firme rain forest and white podzol campinarana. Acta Amazonica 9: 25–41CrossRefGoogle Scholar
  113. Singer R, Morello JH (1960) Ectotrophic forest tree mycorrhizae and forest communities. Ecology 41:549–551CrossRefGoogle Scholar
  114. Singer R, Moser M (1965) Forest mycology and forest communities in South America I. The early fall aspect of the mycoflora of the Cordillera Pelada (Chile), with a mycogeographic analysis and conclusions regarding the heterogeneity of the Valdivian floral district. Mycopathologia et Mycologia Applicata 26 (2–3): 129–191CrossRefGoogle Scholar
  115. Singer R, Smith AH (1958) Studies on secotiaceous fungi—I: A monograph of the genus Thaxterogaster. Brittonia 10(4):201–216CrossRefGoogle Scholar
  116. Singer R, Araujo I, Ivory MH (1983) The ectotrophically mycorrhizal fungi of the neotropical lowlands, especially Central Amazonia (Litter decomposition and ectomycorrhiza). Beihefte zur Nova Hedwigia 77: 1–339Google Scholar
  117. Skrede I, Engh IB, Binder M, Carlsen T, Kauserud H, Bendiksby M (2011) Evolutionary history of Serpulaceae (Basidiomycota): molecular phylogeny, historical biogeography and evidence for a single transition of nutritional mode. BMC Evol Biol 11: 230PubMedPubMedCentralCrossRefGoogle Scholar
  118. Smith ME, Henkel TW, Aime MC, Fremier AK, Vilgalys R (2011) Ectomycorrhizal fungal diversity and community structure on three co-occurring leguminous canopy tree species in a Neotropical rainforest. New Phytol 192: 699–712PubMedCrossRefPubMedCentralGoogle Scholar
  119. Smith ME, Henkel TW, Uehling JK, Fremier AK, Clarke HD, Vilgalys R. (2013) The Ectomycorrhizal Fungal Community in a Neotropical Forest Dominated by the Endemic Dipterocarp Pakaraimaea dipterocarpacea. PLoS ONE 8(1): e55160PubMedPubMedCentralCrossRefGoogle Scholar
  120. Smith ME, Henkel TW, Williams GC, Aime MC, Fremier AK, Vilgalys R (2017) Investigating niche partitioning of ectomycorrhizal fungi in specialized rooting zones of the monodominant leguminous tree Dicymbe corymbosa. New Phytol 215(1): 443–453CrossRefGoogle Scholar
  121. Spegazzini (1887) Fungi Patagonici. Boletin Academia Nacional de Ciencias Córdoba 11(1): 15Google Scholar
  122. Spegazzini C (1912) Mycetes Argentinenses. Anales Museo Nacional de Historia Natural Buenos Aires 23: 9Google Scholar
  123. Sulzbacher MA, Giachini AJ, Grebenc T, Silva BDB, Gurgel FE, Loiola MIB, Neves MA, Baseia IG (2013) A survey of an ectotrophic sand dune forest in the northeast Brazil. Mycosphere 4(6): 1106–1116CrossRefGoogle Scholar
  124. Tedersoo L, Brundrett MC (2017) Evolution of ectomycorrhizal symbiosis in plants. In: Tedersoo L (ed) Biogeography of Mycorrhizal Symbiosis. Ecological Studies (Analysis and Synthesis), vol 230. Springer, ChamGoogle Scholar
  125. Tedersoo L, Smith ME (2013) Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol Rev 27: 83–99CrossRefGoogle Scholar
  126. Tedersoo L, Smith ME (2017) Ectomycorrhizal fungal lineages: Detection of four new groups and notes on consistent recognition of ectomycorrhizal taxa in high-throughput sequencing studies. In: Tedersoo L (eds) Biogeography of Mycorrhizal Symbiosis. Ecological Studies (Analysis and Synthesis), vol 230. Springer, ChamGoogle Scholar
  127. Tedersoo L, Suvi T, Beaver K, Kõljalg U (2007) Ectomycorrhizal fungi of the Seychelles: diversity patterns and host shifts from the native Vateriopsis seychellarum (Dipterocarpaceae) and Intsia bijuga (Caesalpiniaceae) to the introduced Eucalyptus robusta (Myrtaceae), but not Pinus caribea (Pinaceae). New Phytol 175: 321–333CrossRefGoogle Scholar
  128. Tedersoo L, Suvi T, Jairus T, Ostonen I, Polme S (2009) Revisiting ectomycorrhizal fungi of the genus Alnus: differential host specificity, diversity and determinants of the fungal community. New Phytol 182: 727–735PubMedCrossRefPubMedCentralGoogle Scholar
  129. Tedersoo L, Sadam A, Zambrano M, Valencia R, Bahram M (2010a) Low diversity and high host preference of ectomycorrhizal fungi in Western Amazonia, a neotropical biodiversity hotspot. ISME J 4(4): 465–471PubMedCrossRefPubMedCentralGoogle Scholar
  130. Tedersoo L, May TW, Smith ME (2010b) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20: 217–263PubMedCrossRefPubMedCentralGoogle Scholar
  131. Tedersoo L, Põlme S (2012) Infrageneric variation in partner specificity: multiple ectomycorrhizal symbionts associate with Gnetum gnemon (Gnetophyta) in Papua New Guinea. Mycorrhiza 22: 663–668PubMedCrossRefPubMedCentralGoogle Scholar
  132. Tedersoo L, Bahram M, Toots M, Diédhiou A, Henkel t, Kjøller R, Morris MH, Nara K, Nouhra E, Peay K, Põlme, Ryberg M, Smith ME, Kõljalg U (2012) Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol Ecol 21: 4160–4170CrossRefGoogle Scholar
  133. Teklehaimanot Z, Mmolotsi RM (2007) Contribution of red alder to soil nitrogen input in a silvopastoral system. Biol Fertil Soils 43: 843–848CrossRefGoogle Scholar
  134. Trierveiler-Pereira L, Smith M, Trappe J, Nouhra ER (2015) Sequestrate fungi from Patagonian Nothofagus forests: Cystangium (Russulaceae, Basidiomycota). Mycologia 107(1): 90–103PubMedCrossRefPubMedCentralGoogle Scholar
  135. Truong C, Mujic A, Healy R, Kuhar F, Furci G, Torres D, Niskanen T, Sandoval-Leiva P, Fernández N, Escobar J, Moretto A, Palfner G, Pfister D, Nouhra E, Swenie R, Sánchez-García M, Matheny B, Smith M (2017). How to know the fungi: combining field inventories and DNA-barcoding to document fungal diversity. New Phytol 214: 913–919CrossRefGoogle Scholar
  136. Valenzuela E, Esteve-Raventós F (1994) Cortinarius horakii, a new species from Chile. Mycol Res 98(8): 937–938CrossRefGoogle Scholar
  137. Valenzuela E, Moreno G, Garnica S, Ramírez C (1998) Micosociología en bosques nativos de Nothofagus y plantaciones de Pinus radiata en la X Región de Chile: diversidad y rol ecológico. Rev Chil Hist Nat 71: 133–146Google Scholar
  138. van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2014) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205: 1406–1423CrossRefGoogle Scholar
  139. Vargas N, Pardo-de La Hoz C J, Danies G, Franco-Molano A E, Jiménez P, Restrepo S, Grajales A (2017) Defining the phylogenetic position of Amanita species from Andean Colombia. Mycologia 109(2):261–276PubMedCrossRefPubMedCentralGoogle Scholar
  140. Vasco-Palacios AM, López-Quintero CA, Franco-Molano AE, Boekhout T (2014) Austroboletus amazonicus sp. nov. and Fistulinella campinaranae var. scrobiculata, two commonly occurring boletes from a forest dominated by Pseudomonotes tropenbosii (Dipterocarpaceae), in Colombian Amazonia. Mycologia 106: 1004–1014CrossRefGoogle Scholar
  141. Vasco-Palacios AM, Hernandez J, Peñuela-Mora MC, Franco-Molano AE, Boekhout T (2018) Ectomycorrhizal fungi diversity in a white sand forest in western Amazonia. Fungal Ecol 31: 9–18CrossRefGoogle Scholar
  142. Velíšek J, Cejpek K (2011) Pigments of Higher Fungi: A Review. Czech J Food Sci 29 (2): 87–102CrossRefGoogle Scholar
  143. Weng C, Bush MB, Chepstow-Lusty AJ (2004) Holocene changes of Andean alder (Alnus acuminata) in highland Ecuador and Perú. J Quat Sci 19: 685–691CrossRefGoogle Scholar
  144. Winner M, Giménez A, Schmidt H, Sontag B, Steffan B, Steglich W (2004) Unusual pulvinic acid dimers from the common fungi Scleroderma citrinum (ommon earthball) and Chalciporus piperatus (peppery bolete). Angewandte Chemie 43(14): 1883–1886PubMedCrossRefPubMedCentralGoogle Scholar
  145. Zak B (1973) Classification of ectomycorrhizae. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae: Their Ecology and Physiology, Academic Press, New York, London, p 43–78CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Eduardo R. Nouhra
    • 1
  • Götz Palfner
    • 2
  • Francisco Kuhar
    • 1
  • Nicolás Pastor
    • 1
  • Matthew E. Smith
    • 3
  1. 1.IMBIV/CONICET(F.C.E.F.y N.) Universidad Nacional de CórdobaCórdobaArgentina
  2. 2.Universidad de ConcepciónConcepciónChile
  3. 3.Department of Plant PathologyUniversity of FloridaGainesvilleUSA

Personalised recommendations