Advertisement

Applied Queueing Systems

  • László Lakatos
  • László Szeidl
  • Miklós Telek
Chapter

Abstract

Traditional telephone networks were designed to implement a single type of communication service, i.e., the telephone service. Today’s telecommunication networks implement a wide range of communication services. In this section we introduce Markov models of communication services which compete for the bandwidth of a finite capacity communication link.

References

  1. 1.
    802.11: IEEE standard for information technology-telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements - part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications (2007). http://ieeexplore.ieee.org/servlet/opac?punumber=4248376
  2. 2.
    Abramson, N.: The ALOHA system - another alternative for computer communications. In: Proceedings Fall Joint Computer Conference. AFIPS Press, Montvale (1970)CrossRefGoogle Scholar
  3. 3.
    Artalejo, J.R.: G-networks: a versatile approach for work removal in queueing networks. Euro. J. Oper. Res. 126, 233–249 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Artalejo, J.R., Gomez-Corral, A.: Retrial Queueing Systems: A Computational Approach. Springer, Berlin (2008)CrossRefGoogle Scholar
  5. 5.
    Atencia, I., Moreno, P.: The discrete-time Geo/Geo/1 queue with negative customers and disasters. Comput. Oper. Res. 31, 1537–1548 (2004)CrossRefGoogle Scholar
  6. 6.
    Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Sel. Areas Commun. 18, 535–547 (2000)Google Scholar
  7. 7.
    Borovkov, A.A.: Stochastic processes in queueing theory. In: Applications of Mathematics. Springer, Berlin (1976)Google Scholar
  8. 8.
    Dallos, G., Szabó, C.: Random Access Methods of Communication Channels. Akadémiai Kiadó, Budapest (1984). In HungarianGoogle Scholar
  9. 9.
    Falin, G.I., Templeton, J.G.C.: Retrial Queues. Chapman and Hall, London (1997)CrossRefGoogle Scholar
  10. 10.
    Foh, C.H., Zukerman, M.: Performance analysis of the IEEE 802.11 MAC protocol. In: Proceedings of European Wireless Conference, Florence (2002)Google Scholar
  11. 11.
    Gelenbe, E.: Random neural networks with negative and positive signals and product form solution. Neural Comp. 1, 502–510 (1989)CrossRefGoogle Scholar
  12. 12.
    Gelenbe, E.: Introduction to the special issue on g-networks and the random neural network. Perform. Eval. 68, 307–308 (2011)CrossRefGoogle Scholar
  13. 13.
    Gnedenko, B.V., Kovalenko, I.N.: Introduction to Queueing Theory, 2nd edn. Birkhauser Boston Inc., Cambridge (1989)CrossRefGoogle Scholar
  14. 14.
    Gnedenko, B., Danielyan, E., Dimitrov, B., Klimov, G., Matveev, V.: Priority Queues. Moscow State University, Moscow (1973). In RussianGoogle Scholar
  15. 15.
    Harrison, P.G., Pitel, E.: The M/G/1 queue with negative customers. Adv. Appl. Probab. 28, 540–566 (1996)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jaiswal, N.K.: Priority Queues. Academic, New York (1968)zbMATHGoogle Scholar
  17. 17.
    Kaufman, J.: Blocking in a shared resource environment. IEEE Trans. Commun. 29, 1474–1481 (1981)CrossRefGoogle Scholar
  18. 18.
    Koba, E.V.: On a retrial queueing system with a FIFO queueing discipline. Theory Stoch. Proc. 8, 201–207 (2002)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Lakatos, L.: On a simple continuous cyclic waiting problem. Annales Univ. Sci. Budapest Sect. Comp. 14, 105–113 (1994)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Lakatos, L.: Cyclic waiting systems. Cybern. Syst. Anal. 46, 477–484 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lakatos, L.: On the queue length in the discrete cyclic-waiting system of Geo/G/1 type. CCIS 678, 121–131 (2016)zbMATHGoogle Scholar
  22. 22.
    Lakatos, L.: On the waiting time in the discrete cyclic-waiting system of Geo/G/1 type. CCIS 601, 86–93 (2016)zbMATHGoogle Scholar
  23. 23.
    Lakatos, L., Efrosinin, D.: Some aspects of waiting time in cyclic-waiting systems. CCIS 356, 115–121 (2014)zbMATHGoogle Scholar
  24. 24.
    Lakatos, L., Serebriakova, S.: Number of calls in a cyclic-waiting system. Reliab. Theory Appl. 11, 37–43 (2016)Google Scholar
  25. 25.
    Massoulie, L., Roberts, J.: Bandwidth sharing: objectives and algorithms. In: Infocom. IEEE, Piscataway (1999)Google Scholar
  26. 26.
    Medgyessy, P., Takács, L.: Probability Theory. Tankönyvkiadó, Budapest (1973). In HungarianGoogle Scholar
  27. 27.
    Rácz, S., Telek, M., Fodor, G.: Call level performance analysis of 3rd generation mobile core network. In: IEEE International Conf. on Communications, ICC 2001, vol. 2, pp. 456–461. IEEE, Piscataway (2001)Google Scholar
  28. 28.
    Rácz, S., Telek, M., Fodor, G.: Link capacity sharing between guaranteed- and best effort services on an ATM transmission link under GoS constraints. Telecommun. Syst. 17(1,2), 93–114 (2001)Google Scholar
  29. 29.
    Rakhee, G.S., Priya, K.: Analysis of G-queue with unreliable server. OPSEARCH 50, 334–345 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Roberts, J.: A service system with heterogeneous user requirements - application to multi-service telecommunications systems. In: Proceedings of Performance of Data Communications Systems and Their Applications, pp. 423–431. North-Holland Publishing, Amsterdam (1981)Google Scholar
  31. 31.
    Ross, K.W.: Multiservice Loss Models for Broadband Telecommunication Networks. Springer, Berlin (1995)CrossRefGoogle Scholar
  32. 32.
    Szeidl, L.: Estimation of the moment of the regeneration period in a closed central-server queueing network. Theory Probab. Appl. 31, 309–313 (1986)zbMATHGoogle Scholar
  33. 33.
    Szeidl, L.: On the estimation of moment of regenerative cycles in a general closed central-server queueing network. Lect. Notes Math. 1233, 182–189 (1987)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Takagi, H.: Queueing Analysis. Elsevier, Amsterdam (1991)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • László Lakatos
    • 1
  • László Szeidl
    • 2
  • Miklós Telek
    • 3
  1. 1.Eotvos Lorant UniversityBudapestHungary
  2. 2.Obuda UniversityBudapestHungary
  3. 3.Technical University of BudapestBudapestHungary

Personalised recommendations