Advertisement

Genetic Polymorphisms in Inflammatory and Other Regulators in Gastric Cancer: Risks and Clinical Consequences

  • Karolina Rudnicka
  • Steffen Backert
  • Magdalena ChmielaEmail author
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 421)

Abstract

Helicobacter pylori infection is associated with the development of a chronic inflammatory response, which may induce peptic ulcers, gastric cancer (GC), and mucosa-associated lymphoid tissue (MALT) lymphoma. Chronic H. pylori infection promotes the genetic instability of gastric epithelial cells and interferes with the DNA repair systems in host cells. Colonization of the stomach with H. pylori is an important cause of non-cardia GC and gastric MALT lymphoma. The reduction of GC development in patients who underwent anti-H. pylori eradication schemes has also been well described. Individual susceptibility to GC development depends on the host’s genetic predisposition, H. pylori virulence factors, environmental conditions, and geographical determinants. Biological determinants are urgently sought to predict the clinical course of infection in individuals with confirmed H. pylori infection. Possible candidates for such biomarkers include genetic aberrations such as single-nucleotide polymorphisms (SNPs) found in various cytokines/growth factors (e.g., IL-1β, IL-2, IL-6, IL-8, IL-10, IL-13, IL-17A/B, IFN-γ, TNF, TGF-β) and their receptors (IL-RN, TGFR), innate immunity receptors (TLR2, TLR4, CD14, NOD1, NOD2), enzymes involved in signal transduction cascades (PLCE1, PKLR, PRKAA1) as well as glycoproteins (MUC1, PSCA), and DNA repair enzymes (ERCC2, XRCC1, XRCC3). Bacterial determinants related to GC development include infection with CagA-positive (particularly with a high number of EPIYA-C phosphorylation motifs) and VacA-positive isolates (in particular s1/m1 allele strains). The combined genotyping of bacterial and host determinants suggests that the accumulation of polymorphisms favoring host and bacterial features increases the risk for precancerous and cancerous lesions in patients.

Keywords

Gene polymorphism Inflammation Gastric cancer Helicobacter pylori SNP 

Notes

Acknowledgements

The preparation of the chapter was financed by the National Science Center grant SONATA no. 2016/23/D/NZ6/02553. The work of SB was supported by the German Science Foundation (project A04 in CRC-1181).

References

  1. Abdi E, Latifi-Navid S, Zahri S, Yazdanbod A, Safaralizadeh R (2017) Helicobacter pylori genotypes determine risk of non-cardia gastric cancer and intestinal- or diffuse-type GC in Ardabil: A very high-risk area in Northwestern Iran. Microb Pathog 107:287–292.  https://doi.org/10.1016/j.micpath.2017.04.007CrossRefPubMedGoogle Scholar
  2. Al-Sammak F, Kalinski T, Weinert S, Link A, Wex T, Malfertheiner P (2013) Gastric epithelial expression of IL-12 cytokine family in Helicobacter pylori infection in humans: is it head or tail of the coin? PLoS One 17 8(9):e75192.  https://doi.org/10.1371/journal.pone.0075192
  3. Alzahrani S, Lina TT, Gonzalez J, Pinchuk IV, Beswick EJ, Reyes VE (2014) Effect of Helicobacter pylori on gastric epithelial cells. World J Gastroenterol 20:12767–12780.  https://doi.org/10.3748/wjg.v20.i36.12767CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arisawa T, Tahara T, Shiroeda H, Matsue Y, Minato T, Nomura T, Yamada H, Hayashi R, Saito T, Matsunaga K, Fukuyama T, Hayashi N, Otsuka T, Fukumura A, Nakamura M, Shibata T (2012) Genetic polymorphisms of IL17A and pri-microRNA-938, targeting IL17A3’-UTR, influence susceptibility to gastric cancer. Human Immunol 73:747–752.  https://doi.org/10.1016/j.humimm.2012.04.011CrossRefGoogle Scholar
  5. Aspholm M, Olfat F, Nordén J, Sondén B, Lundberg C, Sjöström R, Altraja S, Odenbreit S, Haas R, Wadström T, Engstrand L, Semino-Mora C, Liu H, Dubois A, Teneberg S, Arnqvist A, Borén T (2006) SabA is the H. pylori hemagglutinin and is polymorphic in binding to sialylated glycans. PLoS Pathog 2(10):e110.  https://doi.org/10.1371/journal.ppat.0020110
  6. Backert S, Naumann M (2010) What a disorder: proinflammatory signaling pathways induced by Helicobacter pylori. Trends Microbiol 18(11):479–486.  https://doi.org/10.1016/j.tim.2010.08.003CrossRefPubMedGoogle Scholar
  7. Backert S, Feller SM, Wessler S (2008) Emerging roles of Abl family tyrosine kinases in microbial pathogenesis. Trends Biochem Sci 33(2):80–90.  https://doi.org/10.1016/j.tibs.2007.10.006CrossRefPubMedGoogle Scholar
  8. Backert S, Tegtmeyer N, Selbach M (2010) The versatility of Helicobacter pylori CagA effector protein functions: the master key hypothesis. Helicobacter 15(3):163–176.  https://doi.org/10.1111/j.1523-5378.2010.00759.xCrossRefPubMedGoogle Scholar
  9. Backert S, Tegtmeyer N, Fischer W (2015) Composition, structure and function of the Helicobacter pylori cag pathogenicity island encoded type IV secretion system. Future Microbiol 10:955–965.  https://doi.org/10.2217/fmb.15.32CrossRefPubMedPubMedCentralGoogle Scholar
  10. Backert S, Haas R, Gerhard M, Naumann M (2017) The Helicobacter pylori Type IV secretion system encoded by the cag pathogenicity island: architecture, function, and signaling. Curr Top Microbiol Immunol 413:187–220.  https://doi.org/10.1007/978-3-319-75241-9_8CrossRefPubMedGoogle Scholar
  11. Bagheri N, Azadegan-Dehkordi F, Sanei H, Taghikhani A, Rahimian G, Salimzadeh L, Hashemzadeh-Chaleshtori M, Rafieian-kopaei M, Shirzad M, Shirzad H (2014) Association of TLR4 single-nucleotide polymorphism with H. pylori associated gastric diseases in Iranian patients. Clin Res Hepatol Gastroenterol 38:366–371.  https://doi.org/10.1016/j.clinre.2013.12.004CrossRefPubMedGoogle Scholar
  12. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545.  https://doi.org/10.1016/S0140-6736(00)04046-0CrossRefPubMedPubMedCentralGoogle Scholar
  13. Barden S, Lange S, Tegtmeyer N, Conradi J, Sewald N, Backert S, Niemann HH (2013) A helical RGD motif promoting cell adhesion: crystal structures of the Helicobacter pylori type IV secretion system pilus protein CagL. Structure 21(11):1931–1941.  https://doi.org/10.1016/j.str.2013.08.018CrossRefPubMedGoogle Scholar
  14. Basso D, Zambon CF, Letley DP, Stranges A, Marchet A, Rhead JL, Schiavon S, Guariso G, Ceroti M, Nitti D, Rugge M, Plebani M, Atherton JC (2008) Clinical relevance of Helicobacter pylori cagA and vacA gene polymorphisms. Gastroenterology 135(1):91–99.  https://doi.org/10.1053/j.gastro.2008.03.041CrossRefPubMedGoogle Scholar
  15. Batista SA, Rocha GA, Rocha AM, Saraiva IE, Cabral MM, Oliveira RC, Queiroz DM (2011) Higher number of Helicobacter pylori CagA EPIYA C phosphorylation sites increases the risk of gastric cancer, but not duodenal ulcer. BMC Microbiol 11:61.  https://doi.org/10.1186/1471-2180-11-61CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE (2014) Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94:329–354.  https://doi.org/10.1152/physrev.00040.2012CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bockerstett KA, DiPaolo RJ (2017) Regulation of gastric carcinogenesis by inflammatory cytokines. Cell Mol Gastroenterol Hepatol 4:47–53.  https://doi.org/10.1016/j.jcmgh.2017.03.005CrossRefPubMedPubMedCentralGoogle Scholar
  18. Brenner D, Blaser H, Mak TW (2015) Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol 15:362–374.  https://doi.org/10.1038/nri3834CrossRefPubMedGoogle Scholar
  19. Bridge DR, Merrell DS (2013) Polymorphism in the Helicobacter pylori CagA and VacA toxins and disease. Gut Microbes 4:101–117.  https://doi.org/10.4161/gmic.23797CrossRefPubMedPubMedCentralGoogle Scholar
  20. Brisslert M, Enarsson K, Lundin S, Karlsson A, Kusters JG, Svennerholm AM, Backert S, Quiding-Järbrink M (2005) Helicobacter pylori induce neutrophil transendothelial migration: role of the bacterial HP-NAP. FEMS Microbiol Lett 249(1):95–103CrossRefGoogle Scholar
  21. Butcher LD, den Hartog G, Ernst PB, Crowe SE (2017) Oxidative stress resulting from Helicobacter pylori infection contributes to gastric carcinogenesis. Cell Mol Gastroenterol Hepatol 3:316–322.  https://doi.org/10.1016/j.jcmgh.2017.02.002CrossRefPubMedPubMedCentralGoogle Scholar
  22. Buzzeli JN, Chalinor HV, Pavlic DI, Sutton P, Menheniott TR, Giraud AS, Judd LM (2015) IL-33 is a stomach alarmin that initiates a skewed Th2 response to injury and infection. Cell Mol Gastroenterol Hepatol 1:203–221.  https://doi.org/10.1016/j.jcmgh.2014.12.003CrossRefGoogle Scholar
  23. Caleman Neto A, Rasmussen LT, de Labio RW, de Queiroz VF, Smith Mde A, Viani GA, Payão SL (2014) Gene polymorphism of interleukin 1 and 8 in chronic gastritis patients infected with Helicobacter pylori. J Venom Anim Toxins Incl Trop Dis 20:17.  https://doi.org/10.1186/1678-9199-20-17CrossRefPubMedPubMedCentralGoogle Scholar
  24. Canedo P, Castanheira-Vale AJ, Lunet N, Pereira F, Figueiredo C, Gioia-Patricola L, Canzian F, Moreira H, Suriano G, Barros H, Carneiro F, Seruca R, Machado JC (2008) The interleukin-8-251*T/*A polymorphism is not associated with risk for gastric carcinoma development in a Portuguese population. Eur J Cancer Prev 17(1):28–32CrossRefGoogle Scholar
  25. Capellá G, Pera G, Sala N, Agudo A, Rico F, Del Giudicce G, Plebani M, Palli D, Boeing H, Bueno-de-Mesquita HB, Carneiro F, Berrino F, Vineis P, Tumino R, Panico S, Berglund G, Simán H, Nyrén O, Hallmans G, Martinez C, Dorronsoro M, Barricarte A, Navarro C, Quirós JR, Allen N, Key T, Bingham S, Caldas C, Linseisen J, Nagel G, Overvad K, Tjonneland A, Boshuizen HC, Peeters PH, Numans ME, Clavel-Chapelon F, Trichopoulou A, Lund E, Jenab M, Kaaks R, Riboli E, González CA (2008) DNA repair polymorphisms and the risk of stomach adenocarcinoma and severe chronic gastritis in the EPIC-EURGAST study. Int J Epidemiol 37(6):1316–1325.  https://doi.org/10.1093/ije/dyn145CrossRefPubMedGoogle Scholar
  26. Castaño-Rodríguez N, Kaakoush NO, Goh KL, Fock KM, Mitchell HM (2013) The role of TLR2, TLR4 and CD14 genetic polymorphisms in gastric carcinogenesis: a case-control study and meta analysis. PLoS ONE 8:e60327.  https://doi.org/10.1371/journal.pone.0060327CrossRefPubMedPubMedCentralGoogle Scholar
  27. Castaño-Rodríguez N, Kaakoush NO, Mitchell HM (2014) Pattern-recognition receptors and gastric cancer. Front Immunol 5:336.  https://doi.org/10.3389/fimmu.2014.00336CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chen S, Zhu XC, Liu YL, Wang C, Zhang KG (2016a) Investigating the association between XRCC1 gene polymorphisms and susceptibility to gastric cancer. Genet Mol Res. 15(3).  https://doi.org/10.4238/gmr.15038342
  29. Chen YL, Mo XQ, Huang GR, Huang YQ, Xiao J, Zhao LJ, Wei HY (2016b) Gene polymorphisms of pathogenic Helicobacter pylori in patients with different types of gastrointestinal disease. World J Gastroenterol 22(44):9718–9726.  https://doi.org/10.3748/wjg.v22.i44.9718CrossRefPubMedPubMedCentralGoogle Scholar
  30. Cheng J, Fan XM (2013) Role of cyclooxygenase-2 in gastric cancer development and progression. World J Gastroenterol 19:7361–7368.  https://doi.org/10.3748/wjg.v19.i42.7361CrossRefPubMedPubMedCentralGoogle Scholar
  31. Cherati MR, Shokri-Shirvani J, Karkhah A, Rajabnia R, Nouri HR (2017) Helicobacter pylori cagL amino acid polymorphism D58E59 pave the way toward peptic ulcer disease while N58E59 is associated with gastric cancer in north of Iran. Microb Pathog 107:413–418.  https://doi.org/10.1016/j.micpath.2017.04.025CrossRefPubMedGoogle Scholar
  32. Chmiela M, Miszczyk K, Rudnicka K (2014) Structural modifications of Helicobacter pylori lipopolysaccharide: an idea how to live in peace. World J Gastroenterol 20:9882–9897.  https://doi.org/10.3748/wjg.v20.i29.9882CrossRefPubMedPubMedCentralGoogle Scholar
  33. Correa P, Haenszel W, Cuello C, Tannenbaum S, Archer M (1975) A model for gastric cancer epidemiology. Lancet 2:58–60CrossRefGoogle Scholar
  34. Demitrack ES, Samuelson LC (2017) Notch as a driver of gastric epithelial cell proliferation. Cell Mol Gastroenterol Hepatol 3:323–330.  https://doi.org/10.1016/j.jcmgh.2017.01.012CrossRefPubMedPubMedCentralGoogle Scholar
  35. Dossumbekova A, Prinz C, Mages J, Lang R, Kusters JG, Van Vliet AH, Reindl W, Backert S, Saur D, Schmid RM, Rad R (2006) Helicobacter pylori HopH (OipA) and bacterial pathogenicity: genetic and functional genomic analysis of hopH gene polymorphisms. J Infect Dis 194:1346–1355.  https://doi.org/10.1086/508426CrossRefPubMedGoogle Scholar
  36. El-Omar EM (2001) The importance of interleukin 1β in Helicobacter pylori associated disease. Gut 48:743–747CrossRefGoogle Scholar
  37. El-Omar EM, Oien K, El-Nujumi A, Gillen D, Wirz A, Dahill S, Williams C, Ardill JE, McColl KE (1997) Helicobacter pylori infection and chronic gastric acid hyposecretion. Gastroenterology 113:15–24.  https://doi.org/10.1016/S0016-5085(97)70075-1CrossRefPubMedGoogle Scholar
  38. El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, Young HA, Herrera J, Lissowska J, Yuan CC, Rothman N, Lanyon G, Martin M, Fraumeni JF Jr, Rabkin CS (2000) Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404(6776):398–402.  https://doi.org/10.1038/35006081CrossRefPubMedGoogle Scholar
  39. Epplein M, Xiang YB, Cai Q, Peek RM Jr, Li H, Correa P, Gao J, Wu J, Michel A, Pawlita M, Zheng W, Shu XO (2013) Circulating cytokines and gastric cancer risk. Cancer Causes Control 24:2245–2250.  https://doi.org/10.1007/s10552-013-0284-zCrossRefPubMedGoogle Scholar
  40. Ferreira RM, Machado JC, Leite M, Carneiro F, Figueiredo C (2012) The number of Helicobacter pylori CagA EPIYA C tyrosine phosphorylation motifs influences the pattern of gastritis and the development of gastric carcinoma. Histopathology 60:992–998.  https://doi.org/10.1111/j.1365-2559.2012.04190.xCrossRefPubMedGoogle Scholar
  41. Figueiredo C, Machado JC, Pharoah P, Seruca R, Sousa S, Carvalho R, Capelinha AF, Quint W, Caldas C, van Doorn LJ, Carneiro F, Sobrinho-Simões M (2002) Helicobacter pylori and interleukin 1 genotyping: an opportunity to identify high-risk individuals for gastric carcinoma. J Natl Cancer Inst 94(22):1680–1687CrossRefGoogle Scholar
  42. Franco AT, Friedman DB, Nagy TA, Romero-Gallo J, Krishna U, Kendall A, Israel DA, Tegtmeyer N, Washington MK, Peek RM Jr (2009) Delineation of a carcinogenic Helicobacter pylori proteome. Mol Cell Proteomics 8:1947–1958.  https://doi.org/10.1074/mcp.M900139-MCP200CrossRefPubMedPubMedCentralGoogle Scholar
  43. Fukui H, Zhang X, Sun C, Hara K, Kikuchi S, Yamasaki T, Kondo T, Tomita T, Oshima T, Watari J, Imura J, Fujimori T, Sasako M, Miwa H (2014) IL-22 produced by cancer-associated fibroblasts promotes gastric cancer cell invasion via STAT3 and ERK signalling. Br J Cancer 111:763–771.  https://doi.org/10.1038/bjc.2014.336CrossRefPubMedPubMedCentralGoogle Scholar
  44. Garza-González E, Bosques-Padilla FJ, El-Omar E, Hold G, Tijerina-Menchaca R, Maldonado-Garza HJ, Pérez-Pérez GI (2005) Role of the polymorphic IL-1B, IL-1RN and TNF-A genes in distal gastric cancer in Mexico. Int J Cancer 114(2):237–241.  https://doi.org/10.1002/ijc.20718CrossRefPubMedGoogle Scholar
  45. Gifford GB, Demitrack ES, Keeley TM, Tam A, La Cunza N, Dedhia PH, Spence JR, Simeone DM, Saotome I, Louvi A, Siebel CW, Samuelson LC (2017) Notch 1 and Notch 2 receptors regulate mouse and human gastric antral epithelial cell homeostasis. Gut 66:1001–1011.  https://doi.org/10.1136/gutjnl-2015-310811CrossRefPubMedGoogle Scholar
  46. González CA, Figueiredo C, Lic CB, Ferreira RM, Pardo ML, Ruiz Liso JM, Alonso P, Sala N, Capella G, Sanz-Anquela JM (2011) Helicobacter pylori cagA and vacA genotypes as predictors of progression of gastric preneoplastic lesions: a long-term follow-up in a high-risk area in Spain. Am J Gastroenterol 106(5):867–874.  https://doi.org/10.1038/ajg.2011.1CrossRefPubMedGoogle Scholar
  47. Goodwin AC, Weinberger DM, Ford CB, Nelson JC, Snider JD, Hall JD, Paules CI, Peek RM Jr, Forsyth MH (2008) Expression of the Helicobacter pylori adhesin SabA is controlled via phase variation and the ArsRS signal transduction system. Microbiology 154:2231–2240.  https://doi.org/10.1099/mic.0.2007/016055-0CrossRefPubMedPubMedCentralGoogle Scholar
  48. Grebowska A, Moran AP, Matusiak A, Bak-Romaniszyn L, Czkwianianc E, Rechciński T, Walencka M, Płaneta-Małecka I, Rudnicka W, Chmiela M (2008) Anti-phagocytic activity of Helicobacter pylori lipopolysaccharide (LPS)-possible modulation of the innate immune response to these bacteria. Pol J Microbiol 57:185–192PubMedGoogle Scholar
  49. Grebowska A, Moran AP, Bielanski W, Matusiak A, Rechcinski T, Rudnicka K, Baranowska A, Rudnicka W, Chmiela M (2010) Helicobacter pylori lipopolysaccharide activity in human peripheral blood mononuclear leukocyte cultures. J Physiol Pharmacol 61:437–442PubMedGoogle Scholar
  50. Hartung ML, Gruber DC, Koch KN, Grüter L, Rehrauer H, Tegtmeyer N, Backert S, Müller A (2015) Helicobacter pylori-induced DNA strand breaks are introduced by nucleotide excision repair endonucleases and promote NF-κB target gene expression. Cell Rep 13(1):70–79.  https://doi.org/10.1016/j.celrep.2015.08.074CrossRefPubMedGoogle Scholar
  51. Hayakawa Y, Fox JG, Wang TC (2017) Isthmus stem cells are the origins of metaplasia in the gastric corpus. Cell Mol Gastroenterol Hepatol 4:89–94.  https://doi.org/10.1016/j.jcmgh.2017.02.009CrossRefPubMedPubMedCentralGoogle Scholar
  52. Howlett M, Chalinor HV, Buzzelli JN, Nguyen N, van Driel IR, Bell KM, Fox JG, Dimitriadis E, Menheniott TR, Giraud AS, Judd LM (2012) IL-11 is a parietal cell cytokine that induces atrophic gastritis. Gut 61:1398–1409.  https://doi.org/10.1136/gutjnl-2011-300539CrossRefPubMedGoogle Scholar
  53. Huang ZG, Tang GC (2010) Influence of Helicobacter pylori cagA gene of gastric mucosa epithelialcell tumor associated protein expression. Zhongguo Gonggongweishen Zazhi 26:881–883Google Scholar
  54. Huang JQ, Zheng GF, Sumanac K, Irvine EJ, Hunt RH (2003) Meta-analysis of the relationship between cagA seropositivity and gastric cancer. Gastroenterology 125:1636–1644CrossRefGoogle Scholar
  55. Hunt RH, Camilleri M, Crowe SE, El-Omar EM, Fox JG, Kuipers EJ, Malfertheiner P, McColl KE, Pritchard DM, Rugge M, Sonnenberg A, Sugano K, Tack J (2015) The stomach in health and disease. Gut 64:1650–1668.  https://doi.org/10.1136/gutjnl-2014-307595CrossRefPubMedPubMedCentralGoogle Scholar
  56. Hwang IR, Kodama T, Kikuchi S, Sakai K, Peterson LE, Graham DY, Yamaoka Y (2002) Effect of interleukin 1 polymorphisms on gastric mucosal interleukin 1beta production in Helicobacter pylori infection. Gastroenterology 123(6):1793–1803.  https://doi.org/10.1053/gast.2002.37043CrossRefPubMedGoogle Scholar
  57. IARC Working Group on the Evaluation of Carcinogenic Risks to humans (1994) Schistosomes, liver flukes and Helicobacter pylori. IIARC Monogr Eval Carcinog Risks Hum 61:1–241Google Scholar
  58. Islami F, Kamangar F (2008) Helicobacter pylori and esophageal cancer risk: a meta-analysis. Cancer Prev Res (Phila) 1(5):329–338.  https://doi.org/10.1158/1940-6207.capr-08-0109CrossRefGoogle Scholar
  59. Jenks PJ, Jeremy AH, Robinson PA, Walker MM, Crabtree JE (2003) Long term infection with Helicobacter felis and inactivation of the tumor suppressor gene p53 cumulatively enhance the gastrin mutation frequency in Big Blue® transgenic mice. J Pathol 201:596–602.  https://doi.org/10.1002/path.1488CrossRefPubMedGoogle Scholar
  60. Jiang YX, Li GM, Yi D, Yu PW (2015) A meta-analysis: The association between interleukin-17 pathway gene polymorphism and gastrointestinal diseases. Gene 572:243–251.  https://doi.org/10.1016/j.gene.2015.07.018CrossRefPubMedGoogle Scholar
  61. Jones KR, Jang S, Chang JY, Kim J, Chung IS, Olsen CH, Merrell DS, Cha JH (2011) Polymorphisms in the intermediate region of VacA impact Helicobacter-pylori-induced disease development. J Clin Microbiol 49:101–110.  https://doi.org/10.1128/JCM.01782-10CrossRefPubMedGoogle Scholar
  62. Kamada T, Kurose H, Yamanaka Y, Manabe N, Kusunoki H, Shiotani A, Inoue K, Hata J, Matsumoto H, Akiyama T, Hirai T, Sadahira Y, Haruma K (2012) Relationship between gastroesophageal junction adenocarcinoma and Helicobacter pylori infection in Japan. Digestion 85(4):256–260.  https://doi.org/10.1159/000336352CrossRefPubMedGoogle Scholar
  63. Kamangar F, Abnet CC, Hutchinson AA, Newschaffer CJ, Helzlsouer K, Shugart YY, Pietinen P, Dawsey SM, Albanes D, Virtamo J, Taylor PR (2006) Polymorphisms in inflammation-related genes and risk of gastric cancer (Finland). Cancer Causes Control 17(1):117–125CrossRefGoogle Scholar
  64. Kawai M, Furuta Y, Yahara K, Tsuru T, Oshima K, Handa N, Takahashi N, Yoshida M, Azuma T, Hattori M, Uchiyama I, Kobayashi I (2011) Evolution in an oncogenic bacterial species with extreme genome plasticity: Helicobacter pylori East Asian genomes. BCM Microbiol 11:104.  https://doi.org/10.1186/1471-2180-11-104CrossRefGoogle Scholar
  65. Khamri W, Walker MM, Clark P, Atherton JC, Thursz MR, Bamford KB, Lechler RI, Lombardi G (2010) Helicobacter pylori stimulates dendritic cells to induce interleukin-17 expression from CD4+ T lymphocytes. Infect Immun 78:845–853.  https://doi.org/10.1128/IAI.00524-09CrossRefPubMedGoogle Scholar
  66. Kim J, Cho YA, Choi IJ, Lee YS, Kim SY, Shin A, Cho SJ, Kook MC, Nam JH, Ryu KW, Lee JH, Kim YW (2012) Effects of Interleukin-10 polymorphisms, Helicobacter pylori infection, and smoking on the risk of noncardia gastric cancer. PLoS ONE 7:e29643.  https://doi.org/10.1371/journal.pone.0029643CrossRefPubMedPubMedCentralGoogle Scholar
  67. Kim SG, Jung HK, Lee HL, Jang JY, Lee H, Kim CG, Shin WG, Shin ES, Lee YC (2013) Guidelines for the diagnosis and treatment of Helicobacter pylori infection in Korea, 2013 revised edition. Korean J Gastroenterol 62:3–26.  https://doi.org/10.4166/kjg.2013.62.1.3
  68. Koeppel M, Garcia-Alcalde F, Glowinski F, Schlaermann P, Meyer TF (2015) Helicobacter pylori infection causes characteristic DNA damage patterns in human cells. Cell Rep 11:1703–1713.  https://doi.org/10.1016/j.celrep.2015.05.030CrossRefPubMedGoogle Scholar
  69. Kwok T, Zabler D, Urman S, Rohde M, Hartig R, Wessler S, Misselwitz R, Berger J, Sewald N, Konig W, Backert S (2007) Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449(7164):862–866.  https://doi.org/10.1038/nature06187CrossRefPubMedGoogle Scholar
  70. Latifi-Navid S, Mohammadi S, Maleki P, Zahri S, Yazdanbod A, Siavoshi F, Massarrat S (2013) Helicobacter pylori vacA d1/-il genotypes and geographic differentiation between high and low incidence areas of gastric cancer in Iran. Arch Iran Med 16:330–337. doi:013166/AIM.005Google Scholar
  71. Lee YC, Chiang TH, Chou CK, Tu YK, Liao WC, Wu MS, Graham DY (2016) Association between Helicobacter pylori eradication and gastric cancer incidence: a systemic review and meta-analysis. Gastroenterology 150:1113–1124.  https://doi.org/10.1053/j.gastro.2016.01.028CrossRefPubMedGoogle Scholar
  72. Li WQ, Zhang L, Ma JL, Zhang Y, Li JY, Pan KF, You WC (2009) Association between genetic polymorphisms of DNA base excision repair genes and evolution of precancerous gastric lesions in a Chinese population. Carcinogenesis 30(3):500–505.  https://doi.org/10.1093/carcin/bgp018CrossRefPubMedGoogle Scholar
  73. Li Y, Dai L, Zhang J, Wang P, Chai Y, Ye H, Zhang J, Wang K (2012) Cyclooxygenase-2 polymorphisms and the risk of gastric cancer in various degrees of relationship in the Chinese Han population. Oncol Lett 3:107–112.  https://doi.org/10.3892/ol.2011.426CrossRefPubMedGoogle Scholar
  74. Li ZX, Wang YM, Tang FB, Zhang L, Zhang, Ma JL, Zhou T, You WC, Pan KF (2015) NOD1 and NOD2 genetic variants in association with risk of gastric cancer and its precursors in a Chinese population. PLoS One 1 10(5):e0124949.  https://doi.org/10.1371/journal.pone.0124949
  75. Lind J, Backert S, Pfleiderer K, Berg DE, Yamaoka Y, Sticht H, Tegtmeyer N (2014) Systematic analysis of phosphotyrosine antibodies recognizing single phosphorylated EPIYA-motifs in CagA of Western-type Helicobacter pylori strains. PLoS ONE 9(5):e96488.  https://doi.org/10.1371/journal.pone.0096488CrossRefPubMedPubMedCentralGoogle Scholar
  76. Lind J, Backert S, Hoffmann R, Eichler J, Yamaoka Y, Perez-Perez GI, Torres J, Sticht H, Tegtmeyer N (2016) Systematic analysis of phosphotyrosine antibodies recognizing single phosphorylated EPIYA-motifs in CagA of East Asian-type Helicobacter pylori strains. BMC Microbiol 16(1):201.  https://doi.org/10.1186/s12866-016-0820-6CrossRefPubMedPubMedCentralGoogle Scholar
  77. Liu J, Xu Q, Yuan Q, Wang Z, Xing C, Yuan Y (2015) Association of IL-17A and IL-17F polymorphisms with gastric cancer risk in Asians: a meta-analysis. Human Immunl 76:6–12.  https://doi.org/10.1016/j.humimm.2014.12.011CrossRefGoogle Scholar
  78. Ma J, Wu D, Hu X, Li J, Cao M, Dong W (2017) Associations between cytokine gene polymorphisms and susceptibility to Helicobacter pylori infection and Helicobacter pylori related gastric cancer, peptic ulcer disease: A meta-analysis. PLoS ONE 4:e0176463.  https://doi.org/10.1371/journal.pone.0176463CrossRefGoogle Scholar
  79. Machado JC, Pharoah P, Sousa S, Carvalho R, Oliveira C, Figueiredo C, Amorim A, Seruca R, Caldas C, Carneiro F, Sobrinho-Simões M (2001) Interleukin 1B and interleukin 1RN polymorphisms are associated with increased risk of gastric carcinoma. Gastroenterology 121(4):823–829CrossRefGoogle Scholar
  80. Machado JC, Figueiredo C, Canedo P, Pharoah P, Carvalho R, Nabais S, Castro Alves C, Campos ML, Van Doorn LJ, Caldas C, Seruca R, Carneiro F, Sobrinho-Simões M (2003) A proinflammatory genetic profile increases the risk for chronic atrophic gastritis and gastric carcinoma. Gastroenterology 125(2):364–371.  https://doi.org/10.1016/S0016-5085(03)00899-0CrossRefPubMedPubMedCentralGoogle Scholar
  81. Machado AM, Figueiredo C, Touati E, Máximo V, Sousa S, Michel V, Carneiro F, Nielsen FC, Seruca R, Rasmussen LJ (2009) Helicobacter pylori infection induces genetic instability of nuclear and mitochondrial DNA in gastric cells. Clin Cancer Res 15:2995–3002.  https://doi.org/10.1158/1078-0432.CCR-08-2686CrossRefPubMedGoogle Scholar
  82. Machado AM, Desler C, Bøggild S, Strickertsson JA, Friis-Hansen L, Figueiredo C, Seruca R, Rasmussen LJ (2013) Helicobacter pylori infection affects mitochondrial function and DNA repair, thus, mediating genetic instability in gastric cells. Mech Ageing Dev 134(10):460–466.  https://doi.org/10.1016/j.mad.2013.08.004CrossRefPubMedGoogle Scholar
  83. Malaty HM, El-Kasabany A, Graham DY, Miller CC, Reddy SG, Srinivasan SR, Yamaoka Y, Berenson GS (2002) Age at acquisition of Helicobacter pylori infection: a follow up study from infancy to adulthood. Lancet 359:931–988.  https://doi.org/10.1016/S0140-6736(02)08025-XCrossRefPubMedGoogle Scholar
  84. Matos JI, de Sousa HA, Marcos-Pinto R, Dinis-Ribeiro M (2013) Helicobacter pylori CagA and VacA genotypes and gastric phenotype: a meta-analysis. Eur J Gastroenterol Hepatol 25(12):1431–1441.  https://doi.org/10.1097/MEG.0b013e328364b53eCrossRefPubMedGoogle Scholar
  85. McClain MS, Beckett AC, Cover TL (2017) Helicobacter pylori vacuolating toxin and gastric cancer. Toxins 9(10):E316.  https://doi.org/10.3390/toxins9100316CrossRefPubMedGoogle Scholar
  86. McLean MH, El-Omar EM (2014) Genetics of gastric cancer. Nat Rev Gastroenterol Hepatol 11:664–674.  https://doi.org/10.1038/nrgastro.2014.143CrossRefPubMedGoogle Scholar
  87. Meira LB, Bugni JM, Green SL, Lee CW, Pang B, Borenshtein D, Rickman BH, Rogers AB, Moroski-Erkul CA, McFaline JL, Schauer DB, Dedon PC, Fox JG, Samson LD (2008) DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Invest 118:2516–2525.  https://doi.org/10.1172/JCI35073CrossRefPubMedPubMedCentralGoogle Scholar
  88. Melchiades JL, Zabaglia LM, Sallas ML, Orcini WA, Chen E, Smith MAC, Payão SLM, Rasmussen LT (2017) Polymorphisms and haplotypes of the interleukin 2 gene are associated with an increased risk of gastric cancer. The possible involvement of Helicobacter pylori. Cytokine 96:203–207.  https://doi.org/10.1016/j.cyto.2017.04.020CrossRefPubMedGoogle Scholar
  89. Melo Barbosa HP, Martins LC, Dos Santos SE, Demachki S, Assumpção MB, Aragão CD, de Oliveira Corvelo TC (2009) Interleukin-1 and TNF-alpha polymorphisms and Helicobacter pylori in a Brazilian Amazon population. World J Gastroenterol 15:1465–1471CrossRefGoogle Scholar
  90. Memon AA, Hussein NR, Miendje Deyi VY, Burette A, Atherton JC (2014) Vacuolating cytotoxin genotypes are strong markers of gastric cancer and duodenal ulcer-associated Helicobacter pylori strains: a matched case-control study. AJ Clin Microbiol. 52(8):2984–2989.  https://doi.org/10.1128/JCM.00551-14CrossRefGoogle Scholar
  91. Mizuno T, Ando T, Nobata K, Tsuzuki T, Maeda O, Watanabe O, Minami M, Ina K, Kusugami K, Peek RM, Goto H (2005) Interleukin-17 levels in Helicobacter pylori-infected gastric mucosa and pathologic sequelae of colonization. World J Gastroenterol 11:6305–6311CrossRefGoogle Scholar
  92. Mnich E, Gajewski A, Rudnicka K, Gonciarz W, Stawerski P, Hinc K, Obuchowski M, Chmiela M (2015) Immunoregulation of antigen presenting and secretory functions of monocytic cells by Helicobacter pylori antigens in relation to impairment of lymphocyte expansion. Acta Biochim Pol 62:641–650.  https://doi.org/10.18388/abp.2015_1045CrossRefPubMedGoogle Scholar
  93. Mocellin S, Verdi D, Pooley KA, Nitti D (2015) Genetic variation and gastric cancer risk: a field synopsis and meta-analysis. Gut 64(8):1209–1219.  https://doi.org/10.1136/gutjnl-2015-309168CrossRefPubMedGoogle Scholar
  94. Moss SF (2016) The clinical evidence linking Helicobacter pylori to gastric cancer. Cell Mol Gastroenterol Hepatol 3(2):183–191.  https://doi.org/10.1016/j.jcmgh.2016.12.001CrossRefPubMedPubMedCentralGoogle Scholar
  95. Mukherjee T, Hovingh ES, Foerster EG, Abdel-Nour M, Philpott DJ, Girardin SE (2018) NOD1 and NOD2 in inflammation, immunity and disease. Arch Biochem Biophys pii S0003–9861(18):30937–30938.  https://doi.org/10.1016/j.abb.2018.12.022CrossRefGoogle Scholar
  96. Naumann M, Sokolova O, Tegtmeyer N, Backert S (2017) Helicobacter pylori: a paradigm pathogen for subverting host cell signal transmission. Trends Microbiol 25:316–328.  https://doi.org/10.1016/j.tim.2016.12.004CrossRefPubMedGoogle Scholar
  97. Ng MT, Van’t Hof R, Crockett JC, Hope ME, Berry S, Thomson J, McLean MH, McColl KE, El-Omar EM, Hold GL (2010) Increase in NF-kappaB binding affinity of the variant C allele of the toll-like receptor 9–1237T/C polymorphism is associated with Helicobacter pylori-induced gastric disease. Infect Immun 78(3):1345–1352.  https://doi.org/10.1128/IAI.01226-09CrossRefPubMedGoogle Scholar
  98. Ni P, Xu H, Xue H, Lin B, Lu Y (2012) A Meta-analysis on Interleukin-10-1082 promoter polymorphism associated with gastric cancer risk. DNA and Cell Biol 31:582–590.  https://doi.org/10.1089/dna.2011.1440CrossRefGoogle Scholar
  99. Nogueira C, Figueiredo C, Carneiro F, Gomes AT, Barreira R, Figueira P, Salgado C, Belo L, Peixoto A, Bravo JC, Bravo LE, Realpe JL, Plaisier AP, Quint WG, Ruiz B, Correa P, van Doorn LJ (2001) Helicobacter pylori genotypes may determine gastric histopathology. Am J Pathol 158(2):647–654CrossRefGoogle Scholar
  100. Ogiwara H, Sugimoto M, Ohno T, Vilaichone RK, Mahachai V, Graham DY, Yamaoka Y (2009) Role of deletion located between the intermediate and middle regions of the Helicobacter pylori vacA gene in cases gastroduodenal diseases. J Clin Microbiol 47:3493–3500.  https://doi.org/10.1128/JCM.00887-09CrossRefPubMedPubMedCentralGoogle Scholar
  101. Ohyauchi M, Imatani A, Yonechi M, Asano N, Miura A, Iijima K, Koike T, Sekine H, Ohara S, Shimosegawa T (2005) The polymorphism interleukin 8–251 A/T influences the susceptibility of Helicobacter pylori related gastric diseases in the Japanese population. Gut 54:330–335.  https://doi.org/10.1136/gut.2003.033050CrossRefPubMedPubMedCentralGoogle Scholar
  102. Olbermann P, Josenhans C, Moodley Y, Uhr M, Stamer C, Vauterin M, Suerbaum S, Achtman M, Linz B (2010) A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PloS Genet 6:e1001069.  https://doi.org/10.1371/journal.pgen.1001069CrossRefPubMedPubMedCentralGoogle Scholar
  103. Oleastro M, Ménard A (2013) The role of Helicobacter pylori outer membrane proteins in adherence and pathogenesis. Biology (Basel) 2:1110–1134.  https://doi.org/10.3390/biology2031110CrossRefGoogle Scholar
  104. Pachathundikandi SK, Lind J, Tegtmeyer N, El-Omar EM, Backert S (2015) Interplay of the Gastric Pathogen Helicobacter pylori with Toll-Like Receptors. Biomed Res Int 2015:192420.  https://doi.org/10.1155/2015/192420CrossRefPubMedPubMedCentralGoogle Scholar
  105. Palomo J, Dietrich D, Martin P, Palmer G, Gabay C (2015) The interleukin (IL)-1 cytokine family–Balance between agonists and antagonists in inflammatory diseases. Cytokine 76(1):25–37.  https://doi.org/10.1016/j.cyto.2015.06.017CrossRefPubMedGoogle Scholar
  106. Paziak-Domanska B, Chmiela M, Jarosińska A, Rudnicka W (2000) Potential role of CagA in the inhibition of T cell reactivity in Helicobacter pylori infections. Cell Immunol 202:136–139.  https://doi.org/10.1006/cimm.2000.1654CrossRefPubMedGoogle Scholar
  107. Peleteiro B, Lunet N, Carrilho C, Durães C, Machado JC, La Vecchia C, Barros H (2010) Association between cytokine gene polymorphisms and gastric precancerous lesions: systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 19(3):762–776.  https://doi.org/10.1158/1055-9965.EPI-09-0917CrossRefPubMedGoogle Scholar
  108. Persson C, Canedo P, Machado JC, El-Omar EM, Forman D (2011) Polymorphisms in inflammatory response genes and their association with gastric cancer: a HuGE systematic review and meta-analyses. Am J Epidemiol 173(3):259–270.  https://doi.org/10.1093/aje/kwq370CrossRefPubMedGoogle Scholar
  109. Petersen CP, Meyer AR, De Salvo C, Choi E, Schlegel C, Petersen A, Engevik AC, Prasad N, Levy SE, Peebles RS, Pizarro TT, Goldenring JR (2018) A signalling cascade of IL-33 to IL-13 regulates metaplasia in the mouse stomach. Gut 67:805–817.  https://doi.org/10.1136/gutjnl-2016-312779CrossRefPubMedGoogle Scholar
  110. Pimentel-Nunes P, Afonso L, Lopes P, Roncon-Albuquerque R Jr, Gonçalves N, Henrique R, Moreira-Dias L, Leite-Moreira AF, Dinis-Ribeiro M (2011) Increased expression of toll-like receptors (TLR) 2, 4, 5 in gastric dysplasia. Pathol Oncol Res 17:677–683.  https://doi.org/10.1007/s12253-011-9368-9CrossRefGoogle Scholar
  111. Plummer M, van Doorn LJ, Franceschi S, Kleter B, Canzian F, Vivas J, Lopez G, Colin D, Muñoz N, Kato I (2007) Helicobacter pylori cytotoxin-associated genotype and gastric precancerous lesions. J Natl Cancer Inst 99:1328–1334.  https://doi.org/10.1093/jnci/djm120CrossRefPubMedGoogle Scholar
  112. Plummer M, Franceschi S, Vignat J, Forman D, de Martel C (2015) Global burden of gastric cancer attributable to Helicobacter pylori. Int J Cancer 136:487–490.  https://doi.org/10.1002/ijc.28999CrossRefPubMedGoogle Scholar
  113. Posselt G, Backert S, Wessler S (2013) The functional interplay of Helicobacter pylori factors with gastric epithelial cells induces a multi-step process in pathogenesis. Cell Commun Signal 11:77.  https://doi.org/10.1186/1478-811X-11-77CrossRefPubMedPubMedCentralGoogle Scholar
  114. Qinghai Z, Yanying W, Yunfang C, Xukui Z, Xiaoqiao Z (2014) Effect of interleukin-17A and interleukin-17F gene polymorphisms on the risk of gastric cancer in Chinese population. Gene 537:328–332.  https://doi.org/10.1016/j.gene.2013.11.007CrossRefPubMedGoogle Scholar
  115. Quin XP, Zhou Y, Chen Y, Li NN, Wu XT (2014) XRCC3 Thr241Met polymorphism and gastric cancer susceptibility: a meta-analysis. Clin Res Hepatol Gastroenterol 38:226–234.  https://doi.org/10.1016/j.clinre.2013.10.011CrossRefGoogle Scholar
  116. Rad R, Prinz C, Neu B, Neuhofer M, Zeitner M, Voland P, Becker I, Schepp W, Gerhard M (2003) Synergistic effect of Helicobacter pylori virulence factors and interleukin-1 polymorphisms for the development of severe histological changes in the gastric mucosa. J Infect Dis 188(2):272–281.  https://doi.org/10.1086/376458CrossRefPubMedGoogle Scholar
  117. Ramis IB, Vianna JS, Gonçalves CV, von Groll A, Dellagostin OA, da Silva PEA (2015) Polymorphisms of the IL-6, IL-8 and IL-10 genes and the risk of gastric pathology in patients infected with Helicobacter pylori. J Microbiol Immunol Infect 50:153–159.  https://doi.org/10.1016/j.jmii.2015.03.002CrossRefPubMedGoogle Scholar
  118. Rhead JL, Letley DP, Mohammadi M, Hussein N, Mohagheghi MA, Eshagh Hosseini M, Atherton JC (2007) A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer. Gastroenterology 133(3):926–936.  https://doi.org/10.1053/j.gastro.2007.06.056CrossRefPubMedGoogle Scholar
  119. Rosenstiel P, Hellmig S, Hampe J, Ott S, Till A, Fischbach W, Sahly H, Lucius R, Fölsch UR, Philpott D, Schreiber S (2006) Influence of polymorphisms in the NOD1/CARD4 and NOD2/CARD15 genes on the clinical outcome of Helicobacter pylori infection. Cell Microbiol 8(7):1188–1198CrossRefGoogle Scholar
  120. Rudnicka K, Miszczyk E, Matusiak A, Walencka M, Moran AP, Rudnicka W, Chmiela M (2015) Helicobacter pylori-driven modulation of NK cell expansion, intracellular cytokine expression and cytotoxic activity. Innate Immun 21:127–139.  https://doi.org/10.1177/1753425913518225CrossRefPubMedGoogle Scholar
  121. Savage SA, Hou L, Lissowska J, Chow WH, Zatonski W, Chanock SJ, Yeager M (2006) Interleukin-8 polymorphisms are not associated with gastric cancer risk in a Polish population. Cancer Epidemiol Biomarkers Prev 15(3):589–591CrossRefGoogle Scholar
  122. Sheh A, Lee CW, Masumura K, Rickman BH, Nohmi T, Wogan GN, Fox JG, Schauer DB (2010) Mutagenic potency of Helicobacter pylori in the gastric mucosa of mice is determined by sex and duration of infection. Proc Natl Acad Sci USA 107:15217–15222.  https://doi.org/10.1073/pnas.1009017107CrossRefPubMedGoogle Scholar
  123. Shibata J, Goto H, Arisawa T, Niwa Y, Hayakawa T, Nakayama A, Mori N (1999) Regulation of tumour necrosis factor (TNF) induced apoptosis by soluble TNF receptors in Helicobacter pylori infection. Gut 45:24–31CrossRefGoogle Scholar
  124. Shigematsu Y, Niwa T, Rehnberg E, Toyoda T, Yoshida S, Mori A, Wakabayashi M, Iwakura Y, Ichinose M, Kim YJ, Ushijima T (2013) Interleukin-1beta induced by Helicobacter pylori infection enhances mouse gastric carcinogenesis. Cancer Lett 340(1):141–147.  https://doi.org/10.1016/j.canlet.2013.07.034CrossRefPubMedGoogle Scholar
  125. Sicinschi LA, Lopez-Carrillo L, Camargo MC, Correa P, Sierra RA, Henry RR, Chen J, Zabaleta J, Piazuelo MB, Schneider BG (2006) Gastric cancer risk in a Mexican population: role of Helicobacter pylori CagA positive infection and polymorphisms in interleukin-1 and -10 genes. Int J Cancer 118(3):649–657.  https://doi.org/10.1002/ijc.21364CrossRefPubMedGoogle Scholar
  126. Sicinschi LA, Correa P, Peek RM, Camargo MC, Piazuelo MB, Romero-Gallo J, Hobbs SS, Krishna U, Delgado A, Mera R, Bravo LE, Schneider BG (2010) CagA C-terminal variations in Helicobacter pylori strains from Colombian patients with gastric precancerous lesions. Clin Microbiol Infect 2010:369–378.  https://doi.org/10.1111/j.1469-0691.2009.02811.xCrossRefGoogle Scholar
  127. Smith SM (2014) Role of Toll-like receptors in Helicobacter pylori infection and immunity. World J Gastrointest Pathophysiol 5(3):133–146.  https://doi.org/10.4291/wjgp.v5.i3.133CrossRefPubMedPubMedCentralGoogle Scholar
  128. Sun X, Xu Y, Wang L, Zhang F, Zhang J, Fu X, Jing T, Han J (2016) Association between TNF A gene polymorphisms and Helicobacter pylori infection: a meta-analysis. PLoS ONE 54:703–706.  https://doi.org/10.1371/journal.pone.0147410CrossRefGoogle Scholar
  129. Tanaka S, Nagashima H, Cruz M, Uchida T, Uotani T, Jiménez Abreu JA, Mahachai V, Vilaichone RK, Ratanachu-Ek T, Tshering L, Graham DY, Yamaoka Y (2017) Interleukin 17C in human Helicobacter pylori gastritis. InfectImmun 85:e00389–17.  https://doi.org/10.1128/IAI.00389-17CrossRefGoogle Scholar
  130. The EUROGAST Study Group (1993) An international association between Helicobacter pylori infection and gastric cancer. Lancet 341:1359–1362CrossRefGoogle Scholar
  131. Torres LE, Melián K, Moreno A, Alonso J, Sabatier CA, Hernández M, Bermúdez L, Rodríguez BL (2009) Prevalence of vacA, cagA and babA2 genes in Cuban Helicobacter pylori isolates. World J Gastroenterol 15:204–210CrossRefGoogle Scholar
  132. Tsai CY, Wang CS, Tsai MM, Chi HC, Cheng WL, Tseng YH, Chen CY, Lin CD, Wu JI, Wang LH, Lin KH (2014) Interleukin-32 increases human gastric cancer cell invasion associated with tumor progression and metastasis. Clin Cancer Res 20:2276–2288.  https://doi.org/10.1158/1078-0432.CCR-13-1221CrossRefPubMedGoogle Scholar
  133. Tsukamoto T, Nakagawa M, Kiriyama Y, Toyoda T, Cao X (2017) Prevention of gastric cancer: eradication of Helicobacter pylori and beyond. Int J Mol Sci 18:1699.  https://doi.org/10.3390/ijms18081699CrossRefPubMedCentralGoogle Scholar
  134. Tu S, Bhagat G, Cui G, Takaishi S, Kurt-Jones EA, Rickman B, Betz KS, Penz-Oesterreicher M, Bjorkdahl O, Fox JG, Wang TC (2008) Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14(5):408–419.  https://doi.org/10.1016/j.ccr.2008.10.011CrossRefPubMedPubMedCentralGoogle Scholar
  135. Varga MG, Peek RM (2017) DNA Transfer and Toll-like receptor modulation by Helicobacter pylori. Curr Top Microbiol Immunol 400:169–193.  https://doi.org/10.1007/978-3-319-50520-6_8CrossRefPubMedPubMedCentralGoogle Scholar
  136. Vaziri F, Peerayeh SN, Alebouyeh M, Maghsoudi N, Azimzadeh P, Siadat SD, Zali MR (2015) Novel effects of Helicobacter pylori CagA on key genes of gastric cancer signal transduction: a comparative transfection study. Pathog Dis 73(3):ftu021.  https://doi.org/10.1093/femspd/ftu021
  137. Wang P, Zhang L, Jiang JM, Ma D, Tao HX, Yuan SL, Wang YC, Wang LC, Liang H, Zhang ZS, Liu CJ (2012) Association of NOD1 and NOD2 genes polymorphisms with Helicobacter pylori related gastric cancer risk in Chinese population. Worl J Gastroenterol 18:2112–2120.  https://doi.org/10.3748/wjg.v18.i17.2112CrossRefGoogle Scholar
  138. Wang J, Guo X, Yu S, Song J, Zhang J, Cao Z, Wang J, Liu M, Dong W (2014) Association between CD14 gene polymorphisms and cancer risk: a meta analysis. PLoS ONE 9(6):e100122.  https://doi.org/10.1371/journal.pone.0100122CrossRefPubMedPubMedCentralGoogle Scholar
  139. Warren JR, Marshall BJ (1983) Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1:1273–1275PubMedGoogle Scholar
  140. Winter JA, Letley DP, Cook KW, Rhead JL, Zaitoun AA, Ingram RJ, Amilon KR, Croxall NJ, Kaye PV, Robinson K, Atherton JC (2014) A role for the vacuolating cytotoxin, VacA, in colonization and Helicobacter pylori-induced metaplasia in the stomach. J Infect Dis 210(6):954–963.  https://doi.org/10.1093/infdis/jiu154CrossRefPubMedPubMedCentralGoogle Scholar
  141. Wong BC, Lam SK, Wong WM, Chen JS, Zheng TT, Feng RE, Lai KC, Hu WH, Yuen ST, Leung SY, Fong DY, Ho J, Ching CK, Chen JS, China Gastric Cancer Study Group (2004) Helicobacter pylori eradication to prevent gastric cancer in a high risk region of China: a randomized controlled trial. JAMA 291:187–194.  https://doi.org/10.1001/jama.291.2.187
  142. Wu MS, Wu CY, Chen CJ, Lin MT, Shun CT, Lin JT (2003) Interleukin-10 genotypes associate with the risk of gastric carcinoma in Taiwanese Chinese. Int J Cancer 104(5):617–623.  https://doi.org/10.1002/ijc.10987CrossRefPubMedGoogle Scholar
  143. Wu WK, Lee CW, Cho CH, Fan D, Wu K, Yu J, Sung JJ (2010) MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene 29:5761–5771.  https://doi.org/10.1038/onc.2010.352CrossRefPubMedGoogle Scholar
  144. Wu HH, Lin WC, Tsai KW (2013) Advances in molecular biomarkers for gastric cancer: miRNAs as emerging novel cancer markers. Expert Rev Mol Med 16:e1.  https://doi.org/10.1017/erm.2013.16CrossRefGoogle Scholar
  145. Xu Y, Cao X, Jiang J, Chen Y, Wang K (2017) TNF-α-308/-238 polymorphisms are associated with gastric cancer: a case-control family study in China. Clin Res Hepatol Gastroenterol 41(1):103–109.  https://doi.org/10.1016/j.clinre.2016.05.014CrossRefPubMedGoogle Scholar
  146. Yamaoka Y (2008) Roles of Helicobacter pylori BabA in gastroduodenal pathogenesis. World J Gastroenterol 14:4265–4272CrossRefGoogle Scholar
  147. Ye F, Brauer T, Niehus E, Drlica K, Josenhans C, Suerbaum S (2007) Flagellar and global gene regulation in Helicobacter pylori modulated by changes in DNA supercoiling. Int J Med Microbiol 297:65–81.  https://doi.org/10.1016/j.ijmm.2006.11.006CrossRefPubMedGoogle Scholar
  148. Ying HY, Yu BW, Yang Z, Yang SS, Bo LH, Shan XY, Wang HJ, Zhu YJ, Wu XS (2016) Interleukin-1B 31 C > T polymorphism combined with Helicobacter pylori-modified gastric cancer susceptibility: evidence from 37 studies. J Cell Mol Med 20:526–536.  https://doi.org/10.1111/jcmm.12737CrossRefPubMedPubMedCentralGoogle Scholar
  149. Zambon CF, Navaglia F, Basso D, Rugge M, Plebani M (2003) Helicobacter pylori babA2, cagA, and s1 vacA genes work synergistically in causing intestinal metaplasia. J Clin Pathol 56:287–291CrossRefGoogle Scholar
  150. Zambon CF, Basso D, Navaglia F, Belluco C, Falda A, Fogar P, Greco E, Gallo N, Rugge M, Di Mario F, Plebani M (2005) Pro- and anti-inflammatory cytokines gene polymorphisms and Helicobacter pylori infection: interactions influence outcome. Cytokine 29:141–152.  https://doi.org/10.1016/j.cyto.2004.10.013CrossRefPubMedGoogle Scholar
  151. Zhang XS, Tegtmeyer N, Traube L, Jindal S, Perez-Perez G, Sticht H, Backert S, Blaser MJ (2015) A specific A/T polymorphism in Western tyrosine phosphorylation B-motifs regulates Helicobacter pylori CagA epithelial cell interaction. PLoS Pathog 11:e1004621.  https://doi.org/10.1371/journal.ppat.1004621CrossRefPubMedPubMedCentralGoogle Scholar
  152. Zhang JZ, Liu CM, Peng HP, Zhang Y (2017) Association of genetic variations in IL-6/IL6R pathway genes with gastric cancer risk in a Chinese population. Gene 623:1–4.  https://doi.org/10.1016/j.gene.2017.04.038CrossRefPubMedGoogle Scholar
  153. Zhao F, Zhu H, Huang M, Yi C, Huang Y (2014) The 765 G > C polymorphism in the cyclooxygenase-2 gene and gastric cancer risk: an update by meta-analysis. Asian Pac J Cancer Prev 15:2863–2868CrossRefGoogle Scholar
  154. Zhou Q, Wang C, Wang X, Wu X, Zhu Z, Liu B, Su L (2014) Association between TLR4 (+896A/G and +1196C/T) polymorphisms and gastric cancer risk: an updated meta-analysis. PLoS ONE 9:e109605.  https://doi.org/10.1371/journal.pone.0109605CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Karolina Rudnicka
    • 1
  • Steffen Backert
    • 2
  • Magdalena Chmiela
    • 1
    Email author
  1. 1.Laboratory of Gastroimmunology, Department of Immunology and Infectious Biology, Faculty of Biology and Environmental ProtectionUniversity of LodzLodzPoland
  2. 2.Department of Biology, Division of MicrobiologyFriedrich Alexander University Erlangen-NurembergErlangenGermany

Personalised recommendations