Advertisement

Time Scales and Exponential Trend to Equilibrium: Gaussian Model Problems

  • Lara NeureitherEmail author
  • Carsten Hartmann
Conference paper
  • 206 Downloads
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 282)

Abstract

We review results on the exponential convergence of multidimensional Ornstein-Uhlenbeck processes and discuss notions of characteristic time scales by means of concrete model systems. We focus, on the one hand, on exit time distributions and provide explicit expressions for the exponential rate of the distribution in the small-noise limit. On the other hand, we consider relaxation time scales of the process to its equilibrium measure in terms of relative entropy and discuss the connection with exit probabilities. Along these lines, we study examples which illustrate specific properties of the relaxation and discuss the possibility of deriving a simulation-based, empirical definition of slow and fast degrees of freedom which builds upon a partitioning of the relative entropy functional in connection with the observed relaxation behaviour.

Keywords

Multidimensional Ornstein-Uhlenbeck process Exponential convergence Relative entropy Large deviations Small noise asymptotics 

Notes

Acknowledgements

This research has been partially funded by Deutsche Forschungsgemeinschaft (DFG) through the grant CRC 1114 “Scaling Cascades in Complex Systems”, Projects A05 “Probing scales in equilibrated systems by optimal nonequilibrium forcing” and B05 “Origin of the scaling cascades in protein dynamics”.

References

  1. 1.
    Arnold, A., Carlen, E., Ju, Q.: Large-time behavior of non-symmetric Fokker-Planck type equations. Commun. Stoch. Anal. 2(1), 153–175 (2008)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Arnold, A., Erb, J.: Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift. arXiv preprint arXiv:1409.5425 (2014)
  3. 3.
    Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Commun. Part. Differ. Equ. 26(1–2), 43–100 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia (2005)zbMATHCrossRefGoogle Scholar
  5. 5.
    Birindelli, I., Demengel, F.: First eigenvalue and maximum principle for fully nonlinear singular operators. Adv. Differ. Equ. 11(1), 91–119 (2006)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bovier, A., den Hollander, F.: Metastability: A Potential-Theoretic Approach. Grundlehren der mathematischen Wissenschaften, vol. 351. Springer, New York (2015)zbMATHCrossRefGoogle Scholar
  7. 7.
    Bakry, D., Émery, M.: Diffusions hypercontractives. In: Azéma, J., Yor, M. (eds.) Séminaire de Probabilités XIX 1983/84. Lecture Notes in Mathematics, vol. 1123, pp. 177–206. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  8. 8.
    Berglund, N.: Kramers’ law: validity, derivations and generalisations. Markov Process. Relat. 19(3), 459–490 (2013)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bolley, F., Gentil, I., Guillin, A.: Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations. J. Funct. Anal. 263(8), 2430–2457 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bovier, A., Gayrard, V., Klein, M.: Metastability in reversible diffusion processes II: precise asymptotics for small eigenvalues. J. Eur. Math. Soc. 7(1), 69–99 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Bolley, F., Villani, C.: Weighted Csiszár-Kullback-Pinsker inequalities and applications to transportation inequalities. Annales de la Faculté des Sciences de Toulouse: Mathématiques 14(3), 331–352 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Cowles, M.K., Carlin, B.P.: Markov chain Monte Carlo convergence diagnostics: a comparative review. J. Am. Stat. Assoc. 91(434), 883–904 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Chetrite, R., Touchette, H.: Nonequilibrium Markov processes conditioned on large deviations. Annales Henri Poincaré 16(9), 2005–2057 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Day, M.V.: Recent progress on the small parameter exit problem. Stoch. Int. J. Probab. Stoch. Process. 20(2), 121–150 (1987)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Donsker, M.D., Srinivasa Varadhan, S.R.: On a variational formula for the principal eigenvalue for operators with maximum principle. Proc. Natl. Acad. Sci. 72(3), 780–783 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Dupuis, P., Wang, H.: Importance sampling, large deviations, and differential games. Stoch. Stoch. Rep. 76(6), 481–508 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Eizenberg, A., Kifer, Y.: The asymptotic behavior of the principal eigenvalue in a singular perturbation problem with invariant boundaries. Probab. Theory Relat. Fields 76(4), 439–476 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Fleming, W.H.: Exit probabilities and optimal stochastic control. Appl. Math. Optim. 4, 329–346 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Fleming, W.H., McEneaney, W.M.: Risk-sensitive control on an infinite time horizon. SIAM J. Control. Optim. 33(6), 1881–1915 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Fleming, W.H., Sheu, S.-J.: Asymptotics for the principal eigenvalue and eigenfunction of a nearly first-order operator with large potential. Ann. Probab. 25, 1953–1994 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Fleming, W.H., Sheu, S.J., Soner, H.M.: A remark on the large deviations of an ergodic Markov process. Stochastics 22(3–4), 187–199 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems, vol. 260. Springer, Heidelberg (2012)zbMATHCrossRefGoogle Scholar
  23. 23.
    Huisinga, W., Meyn, S., Schütte, C.: Phase transitions and metastability in Markovian and molecular systems. Ann. Appl. Probab. 14(1), 419–458 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Huisinga, W., Schmidt, B.: Metastability and dominant eigenvalues of transfer operators. In: Leimkuhler, B., Chipot, C., Elber, R., Laaksonen, A., Mark, A., Schlick, T., Schütte, C., Skeel, R. (eds.) New Algorithms for Macromolecular Simulation, pp. 167–182. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Hartmann, C., Schütte, C., Zhang, W.: Model reduction algorithms for optimal control and importance sampling of diffusions. Nonlinearity 29(8), 2298–2326 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Hänggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ichihara, N.: Large time asymptotic problems for optimal stochastic control with superlinear cost. Stoch. Proc. Appl. 122(4), 1248–1275 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Imkeller, P., Von Storch, J.-S.: Stochastic Climate Models. Progress in Probability. Springer, New York (2001)zbMATHCrossRefGoogle Scholar
  29. 29.
    Jack, R.L., Sollich, P.: Large deviations of the dynamical activity in the east model: analysing structure in biased trajectories. J. Phys. A 47(1), 015003 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Kaiser, M., Jack, R.L., Zimmer, J.: Acceleration of convergence to equilibrium in Markov chains by breaking detailed balance. J. Stat. Phys. 168(2), 259–287 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Lucarini, V., Bódai, T.: Edge states in the climate system: exploring global instabilities and critical transitions. Nonlinearity 30(7), R32 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Le Bris, C., Lelièvre, T., Luskin, M., Perez, D.: A mathematical formalization of the parallel replica dynamics. Monte Carlo Methods Appl. 18(2), 119–146 (2012)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, New York (2004)CrossRefGoogle Scholar
  34. 34.
    Legoll, F., Lelièvre, T.: Effective dynamics using conditional expectations. Nonlinearity 23(9), 2131–2163 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Lelièvre, T., Stoltz, G.: Partial differential equations and stochastic methods in molecular dynamics. Acta Numer. 25, 681–880 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Metafune, G., Pallara, D., Priola, E.: Spectrum of Ornstein-Uhlenbeck operators in \(L^p\) spaces with respect to invariant measures. J. Funct. Anal. 196(1), 40–60 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Menz, G., Schlichting, A.: Poincaré and logarithmic Sobolev inequalities by decomposition of the energy landscape. Ann. Probab. 42(5), 1809–1884 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Martorell, S., Soares, C.G., Barnett, J.: Safety, Reliability and Risk Analysis: Theory. Methods and Applications. CRC Press, Boca Raton (2014)CrossRefGoogle Scholar
  39. 39.
    Markowich, P.A., Villani, C.: On the trend to equilibrium for the Fokker-Planck equation: an interplay between physics and functional analysis. Mat. Contemp. 19, 1–29 (2000)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Nier, F., Helffer, B.: Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians. Lecture Notes in Mathematics, vol. 1862. Springer, Heidelberg (2005)Google Scholar
  41. 41.
    Øksendal, B.K.: Stochastic Differential Equations: An Introduction With Applications. Springer, New York (2003)zbMATHCrossRefGoogle Scholar
  42. 42.
    Pavliotis, G.A.: Stochastic processes and applications. Texts in Applied Mathematics, vol. 60. Springer, New York (2014)Google Scholar
  43. 43.
    Rey-Bellet, L., Spiliopoulos, K.: Irreversible Langevin samplers and variance reduction: a large deviations approach. Nonlinearity 28(7), 2081–2104 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Sharma, U.: Coarse-graining of Fokker-Planck equations. Ph.D. thesis, Technische Universiteit Eindhoven (2017)Google Scholar
  45. 45.
    Schütte, C., Sarich, M.: Metastability and Markov State Models in Molecular Dynamics: Modeling, Analysis, Algorithmic Approaches. Courant Lecture Notes, vol. 24. American Mathematical Society, Providence (2013)Google Scholar
  46. 46.
    Schütte, C., Winkelmann, S., Hartmann, C.: Optimal control of molecular dynamics using Markov state models. Math. Prog. Ser. B 134, 259–282 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Ventsel’, A.D.: Formulae for eigenfunctions and eigenmeasures associated with a Markov process. Theory Probab. Appl. 18(1), 1–26 (1973)CrossRefGoogle Scholar
  48. 48.
    Vanden-Eijnden, E., Weare, J.: Rare event simulation of small noise diffusions. Commun. Pure Appl. Math. 65(12), 1770–1803 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Ventsel’, A.D., Freidlin, M.I.: On small random perturbations of dynamical systems. Russ. Math. Surv. 25(1), 1–55 (1970)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Zabczyk, J.: Exit problem and control theory. Syst. Control. Lett. 6(3), 165–172 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Zabczyk, J.: Mathematical Control Theory: An Introduction. Springer, New York (2009)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für MathematikBrandenburgische Technische Universität Cottbus-SenftenbergCottbusGermany

Personalised recommendations