Advertisement

A Temporal Learning Framework: From Experience of Artificial Cultivation to Knowledge

  • Lin SunEmail author
  • Zengwei Zheng
  • Jianzhong Wu
  • JianFeng Zhu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11204)

Abstract

This paper presents a novel learning framework to generate fine-grained temporal cultivation knowledge from large climatic sensor data. Compared with human-experience based control, the machine-learned cultivation knowledge can provide precise climatic descriptions in temporal domain during the growth of plants. In the paper, the temporal characteristics of the sensor data are analyzed with heat maps in different temporal aspects. A merging algorithm on temporal segments, which are initialized with respect to the regularity of the heat maps, is designed to create climatic labels. Then the training samples consisting of temporal attributes and climatic labels are constructed for knowledge learning, which is represented as a collection of tree-structured classifiers. The experiments are carried out on the cultivation of a valuable Chinese herbal medicine. A cultivation knowledge cube in month, day and hour dimensions is illustrated. The results show that about 80% climatic conditions in the past successful cases can be duplicated to guide the future artificial cultivation by our method. The framework can also be applied to learn the knowledge of cultivation practices for other plants.

Notes

Acknowledgment

The authors would like to thank Prof. Yong He of Zhejiang University for providing the sensor data. This work is supported by Zhejiang Provincial Natural Science Foundation of China (No. LY17F020008), Hangzhou Science and Technology Development Plan Project (No. 20150432B17, 20162012A06, 20170432B30).

References

  1. 1.
    Mörchen, F.: Time Series Knowledge Mining. Görich & Weiershäuser, Marburg (2006)Google Scholar
  2. 2.
    Mitsa, T.: Temporal Data Mining. Chapman and Hall/CRC, New York (2010)zbMATHGoogle Scholar
  3. 3.
    Fu, T.C.: A review on time series data mining. Eng. Appl. Artif. Intell. 24(1), 164–181 (2011)Google Scholar
  4. 4.
    Esling, P., Agon, C.: Time-series data mining. ACM Comput. Surv. (CSUR) 45(1), 12 (2012)zbMATHGoogle Scholar
  5. 5.
    Gupta, M., Gao, J., Aggarwal, C.C., Han, J.: Outlier detection for temporal data: a survey. IEEE Trans. Knowl. Data Eng. 26(9), 2250–2267 (2014)zbMATHGoogle Scholar
  6. 6.
    McBratney, A., Whelan, B., Ancev, T., Bouma, J.: Future directions of precision agriculture. Precision Agric. 6(1), 7–23 (2005)Google Scholar
  7. 7.
    Mulla, D.J.: Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst. Eng. 114(4), 358–371 (2013)Google Scholar
  8. 8.
    Ojha, T., Misra, S., Raghuwanshi, N.S.: Wireless sensor networks for agriculture: The state of-the-art in practice and future challenges. Comput. Electron. Agric. 118, 66–84 (2015)Google Scholar
  9. 9.
    Ruß, G., Brenning, A.: Data mining in precision agriculture: management of spatial information. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS (LNAI), vol. 6178, pp. 350–359. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14049-5_36Google Scholar
  10. 10.
    Tripathy, A., et al.: Data mining and wireless sensor network for agriculture pest/disease predictions. In: 2011 World Congress on Information and Communication Technologies (WICT), pp. 1229–1234. IEEE (2011)Google Scholar
  11. 11.
    Ruß, G., Kruse, R.: Exploratory hierarchical clustering for management zone delineation in precision agriculture. In: Perner, P. (ed.) ICDM 2011. LNCS (LNAI), vol. 6870, pp. 161–173. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23184-1_13Google Scholar
  12. 12.
    Ramesh, D., Vardhan, B.V.: Data mining techniques and applications to agricultural yield data. Int. J. Adv. Res. Comput. Commun. Eng. 2(9), 3477–3480 (2013)Google Scholar
  13. 13.
    Guo, W., Cui, S., Torrion, J., Rajan, N.: Data-driven precision agriculture: opportunities and challenges. In: Soil-Specific Farming, pp. 353–372 (2015)Google Scholar
  14. 14.
    Patel, H., Patel, D.: A brief survey of data mining techniques applied to agricultural data. International Journal of Computer Applications 95(9) (2014) Google Scholar
  15. 15.
    Mohanty, N.R., Patil, C.: Wireless sensor network design for greenhouse automation. Int. J. Eng. Innovative Technol. 3(2), 257–262 (2012)Google Scholar
  16. 16.
    Chaudhary, D., Nayse, S., Waghmare, L.: Application of wireless sensor networks for greenhouse parameter control in precision agriculture. Int. J. Wireless Mobile Netw. (IJWMN) 3(1), 140–149 (2011)Google Scholar
  17. 17.
    Ferentinos, K.P., Katsoulas, N., Tzounis, A., Bartzanas, T., Kittas, C.: Wireless sensor networks for greenhouse climate and plant condition assessment. Biosys. Eng. 153, 70–81 (2017)Google Scholar
  18. 18.
    Shamshiri, R., Ismail, W.I.W.: A review of greenhouse climate control and automation systems in tropical regions. J. Agric. Sci. Appl. 2(3), 176–183 (2013)Google Scholar
  19. 19.
    Rani, S., Sikka, G.: Recent techniques of clustering of time series data: a survey. International Journal of Computer Applications 52(15) (2012)Google Scholar
  20. 20.
    Zhang, X., Wu, J., Yang, X., Ou, H., Lv, T.: A novel pattern extraction method for time series classification. Optim. Eng. 10(2), 253–271 (2009)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Pree, H., Herwig, B., Gruber, T., Sick, B., David, K., Lukowicz, P.: On general purpose time series similarity measures and their use as kernel functions in support vector machines. Inf. Sci. 281, 478–495 (2014)Google Scholar
  22. 22.
    Batal, I., Fradkin, D., Harrison, J., Moerchen, F., Hauskrecht, M.: Mining recent temporal patterns for event detection in multivariate time series data. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 280–288. ACM (2012)Google Scholar
  23. 23.
    Wang, F., Lee, N., Hu, J., Sun, J., Ebadollahi, S., Laine, A.F.: A framework for mining signatures from event sequences and its applications in healthcare data. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 272–285 (2013)Google Scholar
  24. 24.
    Liu, X., Zhai, K., Pedrycz, W.: An improved association rules mining method. Expert Syst. Appl. 39(1), 1362–1374 (2012)Google Scholar
  25. 25.
    Nguyen, L.T., Vo, B., Hong, T.P., Thanh, H.C.: Car-miner: an efficient algorithm for mining class-association rules. Expert Syst. Appl. 40(6), 2305–2311 (2013)Google Scholar
  26. 26.
    Noulas, A., Scellato, S., Lathia, N., Mascolo, C.: Mining user mobility features for next place prediction in location-based services. In: 2012 IEEE 12th International Conference on Datamining (ICDM), pp. 1038–1043. IEEE (2012)Google Scholar
  27. 27.
    Ying, J.J.C., Lee, W.C., Tseng, V.S.: Mining geographic-temporal-semantic patterns in trajectories for location prediction. ACM Trans. Intell. Syst. Technol. (TIST) 5(1), 2 (2013)Google Scholar
  28. 28.
    Song, H., Li, G.: Tourism demand modelling and forecasting a review of recent research. Tour. Manag. 29(2), 203–220 (2008)Google Scholar
  29. 29.
    Zhong, S., Khoshgoftaar, T.M., Seliya, N.: Clustering-based network intrusion detection. Int. J. Reliab. Qual. Saf. Eng. 14(02), 169–187 (2007)Google Scholar
  30. 30.
    Batal, I., Valizadegan, H., Cooper, G.F., Hauskrecht, M.: A temporal pattern mining approach for classifying electronic health record data. ACM Trans. Intell. Syst. Technol. (TIST) 4(4), 63 (2013)Google Scholar
  31. 31.
    Ouyang, R., Ren, L., Cheng, W., Zhou, C.: Similarity search and pattern discovery in hydrological time series data mining. Hydrol. Process. 24(9), 1198–1210 (2010)Google Scholar
  32. 32.
    Franke, J., Menz, G.: Multi-temporal wheat disease detection by multi-spectral remote sensing. Precision Agric. 8(3), 161–172 (2007)Google Scholar
  33. 33.
    Mahlein, A.K., Oerke, E.C., Steiner, U., Dehne, H.W.: Recent advances in sensing plant diseases for precision crop protection. Eur. J. Plant Pathol. 133(1), 197–209 (2012)Google Scholar
  34. 34.
    Ibrahim, H.M., Huggins, D.R.: Spatio-temporal patterns of soil water storage under dryland agriculture at the watershed scale. J. Hydrol. 404(3), 186–197 (2011)Google Scholar
  35. 35.
    Diacono, M., Castrignanò, A., Troccoli, A., DeBenedetto, D., Basso, B., Rubino, P.: Spatial and temporal variability of wheat grain yield and quality in a mediterranean environment: a multivariate geostatistical approach. Field Crops Res. 131, 49–62 (2012)Google Scholar
  36. 36.
    Tripathy, A., et al.: Knowledge discovery and leaf spot dynamics of groundnut crop through wireless sensor network and data mining techniques. Comput. Electron. Agric. 107, 104–114 (2014)Google Scholar
  37. 37.
    Mahmood, A., Shi, K., Khatoon, S., Xiao, M.: Data mining techniques for wireless sensor networks: a survey. Int. J. Distrib. Sens. Netw. 9(7), 406316 (2013)Google Scholar
  38. 38.
    Erazo, M., et al.: Design and implementation of a wireless sensor network for rose greenhouses monitoring. In: 2015 6th International Conference on Automation, Robotics and Applications (ICARA), pp. 256–261. IEEE (2015)Google Scholar
  39. 39.
    Park, D., Cho, S., Park, J.: The realization of greenhouse monitoring and auto control system using wireless sensor network for fungus propagation prevention in leaf of crop. In: Ślęzak, D., Kim, T.-H., Stoica, A., Kang, B.-H. (eds.) CA 2009. CCIS, vol. 65, pp. 28–34. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10741-2_4Google Scholar
  40. 40.
    Cao, W., Xu, G., Yaprak, E., Lockhart, R., Yang, T., Gao, Y.: Using wireless sensor networking (wsn) to manage micro-climate in greenhouse. In: IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications. MESA 2008, pp. 636–641. IEEE (2008)Google Scholar
  41. 41.
    Bernardo, J.M., Smith, A.F.: Bayesian theory (2001)Google Scholar
  42. 42.
    Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)zbMATHGoogle Scholar
  43. 43.
    Freund, Y., Schapire, Robert E.: A desicion-theoretic generalization of on-line learning and an application to boosting. In: Vitányi, P. (ed.) EuroCOLT 1995. LNCS, vol. 904, pp. 23–37. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-59119-2_166Google Scholar
  44. 44.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)zbMATHGoogle Scholar
  45. 45.
    Juan, A., Ning, Y., Hong, H., ShuYun, L., et al.: Effects of temperature on the growth and physiological characteristics of dendrobium officinale (orchidaceae). Acta Botanica Yunnanica 32(5), 420–426 (2010)Google Scholar
  46. 46.
    Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)Google Scholar
  47. 47.
    Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manage. 45(4), 427–437 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lin Sun
    • 1
    Email author
  • Zengwei Zheng
    • 1
  • Jianzhong Wu
    • 1
  • JianFeng Zhu
    • 2
  1. 1.Intelligent Plant Factory of Zhejiang Province Engineering LabZhejiang University City CollegeHangzhouChina
  2. 2.College of Computer Science and TechnologyZhejiang UniversityHangzhouChina

Personalised recommendations