Passive Components

  • Badih El-Kareh
  • Lou N. Hutter


Integrated components that do not amplify current or voltage signals belong to a family of devices referred to as passive components. This includes resistors, capacitors, varactors, and inductors. This chapter describes passive components that can be integrated in a CMOS technology. The design and characteristics of different types of resistors, capacitors, varactors, and spiral inductors are described, followed by simple examples of their applications in analog circuits. Passive components, in particular capacitor and resistors, occupy a substantial area of the chip (Fig.  1.12). They should be optimized by minimizing the area while maintaining the desired electrical properties.

Supplementary material


  1. 1.
    K. Kato, T. Ono, Y. Amemiya, Electrical trimming of polycrystalline silicon resistors and its application to analog ICs. IEEE Trans. Electron Dev 27(11), 2194–2195 (1979)CrossRefGoogle Scholar
  2. 2.
    W.A. Lane, G.T. Wrixon, The design of thin-film polysilicon resistors for analog applications. IEEE Trans. Electron Dev. 36(4), 738–744 (1989)CrossRefGoogle Scholar
  3. 3.
    F. Hegner, The industrial production of high-quality nickel-chromium resistors with controlled temperature coefficient of resistance. Thin Solid Films 57(2), 359–362 (1979)CrossRefGoogle Scholar
  4. 4.
    G. Nocerino, K.E. Singer, The electrical and compositional structure of thin Ni-Cr films. Thin Solid Films 57(2), 343–348 (1979)CrossRefGoogle Scholar
  5. 5.
    M.A. Bayne, Al-doped Ni-Cr for temperature coefficient of resistance control in hybrid thin-film resistors. J. Vac. Sci. Technol. A4(6), 3142–3145 (1986)CrossRefGoogle Scholar
  6. 6.
    F. Wu, A.W. McLaurin, K.E. Henson, D.G. Managhan, S.L. Thomasson, The effects on the process parameters on the electrical and microstructure characteristics of the CrSi thin resistor films: Part I. Thin Solid Films 332(1–2), 418–422 (1998)CrossRefGoogle Scholar
  7. 7.
    D. Nachrodt, U. Pachen, A. Ten Have, H. Vogt, Ti/Ni(80%)Cr(20%) thin-film resistor with near zero temperature coefficient of resistance for integration in a standard CMOS process. IEEE Electron Dev. Lett. 29(3), 212–214 (2008)CrossRefGoogle Scholar
  8. 8.
    P. Zurcher, P. Alluri, P. Chu, A. Duvallet, C. Happ, R. Henderson, J. Mendonca, M. Kim, M. Petras, M. Raymond, T. Remmel, D. Roberts, B. Steimle, J. Sipanuk, S. Straub, T. Sparks, M. Tarabbia, H. Thibieroz, M. Miller, Integration of thin-film MIM capacitors and resistors into copper metallization based RF-CMOS and BiCMOS technologies. IEEE IEDM Tech. Digest, 153–156 (2000)Google Scholar
  9. 9.
    R.W. Berry, P.M. Hall, M.T. Harris, Thin Film Technology (Van Nostrand, 1968)Google Scholar
  10. 10.
    S.M. Sze, Physics of Semiconductor Devices (John Wiley & Sons, 1981), p. 43Google Scholar
  11. 11.
    M.G. Holland, Phonon scattering in semiconductors from thermal conductivity studies. Phys. Rev. 134, A471 (1964)CrossRefGoogle Scholar
  12. 12.
    B.H. Armstrong, The physics of SiO2 and its interfaces, in Thermal Conductivity in SiO2, ed. by S. T. Pantelides, (Pargamon Press, New York, 1978)CrossRefGoogle Scholar
  13. 13.
    C.Y. Ho, R.W. Powell, P.E. Liley, Thermal Conductivity of the Elements, a Comprehensive Review (American Chemical Society and American Institute of Physics, New York, 1975)Google Scholar
  14. 14.
    T.I. Kamins, Hall mobility in chemically deposited polycrystalline silicon. J. Appl. Phys. 42(11), 4357–4365 (1971)CrossRefGoogle Scholar
  15. 15.
    J.Y. Seto, The electrical properties of polycrystalline silicon films. J. Appl. Phys. 46(12), 5247–5254 (1975)CrossRefGoogle Scholar
  16. 16.
    H.M. Chuang, S.F. Tsai, K.B. Thei, S.F. Tsai, W.C. Li, Temperature-dependent characteristics of diffused and polysilicon resistors. IEEE Trans. Electron. Dev. 50(5), 1413–1415 (2003)CrossRefGoogle Scholar
  17. 17.
    D.N. Kouvatsos, A.T. Voutsas, M.K. Hatalis, High-performance thin-film transistors in large grain size polysilicon deposited by thermal decomposition of disilane. IEEE Trans. Electron Dev. 43(9), 1399–1406 (1996)CrossRefGoogle Scholar
  18. 18.
    M. Koda, Y. Shida, J. Kawaguchi, Y. Kaneko, Improving gate oxide integrity in p+pMOSFET by using large grain size polysilicon gate. IEEE IEDM Tech. Digest, 471–474 (1993)Google Scholar
  19. 19.
    N.C.-C. Lu, L. Gerzberg, C.-Y. Lu, J.D. Meindl, Modeling and optimization of monolithic polycrystalline silicon resistors. IEEE Trans. Electron Dev. ED-28(7), 818–830 (1981)CrossRefGoogle Scholar
  20. 20.
    T.A. Carbone, P. Plourde, E. Karagiannis, Correlation of ellipsometric volume fraction to polysilicon grain size from transmission electron microscopy. IEEE/SEMI ASMC, 359–367 (1999)Google Scholar
  21. 21.
    M.M. Mandurah, K.C. Saraswat, T.I. Kamins, Phosphorus doping of low pressure chemically vapor-deposited silicon films. J. Electrochem. Soc. 126(8), 1019–1023 (1979)CrossRefGoogle Scholar
  22. 22.
    N.C.C. Lu, L. Gerzberg, J.D. Meindl, A quantitative model of the effect of grain size on the resistivity of polycrystalline silicon resistors. Electron Dev. Lett. EDL-1(3), 38–41 (1980)CrossRefGoogle Scholar
  23. 23.
    M.E. Cowher, T.O. Sedgwick, Chemical vapor deposited polycrystalline silicon. J. Electrochem. Soc. 119(11), 1565–1570 (1972)CrossRefGoogle Scholar
  24. 24.
    A.L. Fripp, Dependence of resistivity on the doping level of polycrystalline silicon. J. Appl. Phys. 46(3), 1240–1244 (1975)CrossRefGoogle Scholar
  25. 25.
    P. Rai-Choudhury, P.L. Hower, Growth and characterization of polycrystalline silicon. J. Electrochem. Soc. 120(12), 1761–1766 (1971)CrossRefGoogle Scholar
  26. 26.
    G. Baccarani, B. Riccò, Transport properties of polycrystalline silicon films. J. Appl. Phys. 49(11), 5565–5570 (1978)CrossRefGoogle Scholar
  27. 27.
    M. Nakabayshi, M. Ikegami, T. Daikoku, Influence of hydrogen on electrical characteristics of poly-Si resistor. Jpn. J. Appl. Phys. 32(Part 1 (9A)), 3734–3738 (1993)CrossRefGoogle Scholar
  28. 28.
    M.M. Mandurah, K. Saraswat, T.I. Kamins, A model for conduction in polycrystalline silicon – Part II: Comparison of Theory and experiment. IEEE Trans. Electron Dev. ED-28(10) (1981)CrossRefGoogle Scholar
  29. 29.
    W.-C. Liu, K.-B. Thei, H.-M. Chuang, K.-Y. Lin, C.-C. Cheng, Y.-S. Ho, C.-Y. Su, S.-C. Wong, C.-H. Lin, C.-H. Dias, Characterization of polysilicon resistors in sub-0.25μm CMOS ULSI applications. IEEE Electron Dev. Lett. 22(7), 318–320 (2001)CrossRefGoogle Scholar
  30. 30.
    L.J. Van der Pauw, A method of measuring specific resistivity and Hall effect of disc of arbitrary shape. Phillips Res. Reports 13, 1–9 (1958)Google Scholar
  31. 31.
    C.M. Osburn, J.Y. Tsai, Q.F. Wang, J. Rose, A. Cowen, Predict 1.6: Modeling of metal silicide processes. J. Electrochem. Soc. 140(12), 3660–3670 (1993)CrossRefGoogle Scholar
  32. 32.
    M.S. Raman, T. Kifle, E. Bhattacharya, K.N. Bhat, Physical model for the resistivity and temperature coefficient of resistivity in heavily doped Polysilicon. IEEE Trans. Electron Dev. 53(8), 2006 (1885-1892)Google Scholar
  33. 33.
    D.W. Lee, T.M. Roh, H.S. Park, J. Kim, J.G. Koo, D.Y. Kim, Fabrication technology of polysilicon resistors using novel mixed process for analogue CMOS application. IEEE Electronic Lett. 35(7), 803–804 (1999)Google Scholar
  34. 34.
    W. Tatinian, E. Simoen, N. Ouassif, B. Desoete, R. Gillon, P. Pannier, Self-heating based model for polysilicon resistors. IEEE Midwest Symp. Circuits and Systems, MWSCAS, Tech. Digest 3, 1337–1339 (2004)Google Scholar
  35. 35.
    P. Steinmann, E. Beach, W. Meinel, A. Chatterjee, D. Weiser, R. Bucksch, W. Tang, Simple analytical model of the thermal resistance of resistors in integrated circuits. IEEE Trans. Electron Dev. 57(5), 1029–1036 (2010)CrossRefGoogle Scholar
  36. 36.
    N.C.C. Lu, L. Gerzberg, C.Y. Lu, D. Meindl, A conduction model for semiconductor grain boundary- semiconductor barriers in polycrystalline silicon films. IEEE Trans. Electron Dev. ED-30, 137–149 (1983)CrossRefGoogle Scholar
  37. 37.
    Y. Amemiya, T. Ono, K. Kato, Electrical trimming of heavily doped polycrystalline silicon resistors. IEEE ED-26(11), 1138–1142 (1979)Google Scholar
  38. 38.
    S. Das, S.K. Lahiri, Electrical trimming of ion-beam sputtered polysilicon resistors by high current pulses. IEEE Trans. Electron Dev. 41(8), 1429–1435 (1994)CrossRefGoogle Scholar
  39. 39.
    K. Kato, T. Ono, Y. Amemiya, A physical mechanism of current-induced resistance decrease in heavily doped polysilicon resistors. IEEE Trasn. Electron Dev. ED-29(8), 1156–1161 (1982)CrossRefGoogle Scholar
  40. 40.
    K. Kato, T. Ono, Y. Amemiya, A monolithic 14 bit D/a converter fabricated with a new trimming technique (DOT). IEEE J. Solid State Circuits 19(5), 802–807 (1984)CrossRefGoogle Scholar
  41. 41.
    M.I. Elmasry, Capacitance calculations in MOSFET VLSI. IEEE Electron Dev. Lett. EDL-3(1), 6–7 (1982)CrossRefGoogle Scholar
  42. 42.
    R. Shrivastava, K. Fitzpatrick, A simple model for the overlap capacitance of a VLSI MOS device. IEEE Trans. Electron Dev. ED-29(12), 1982 (1870-1875)Google Scholar
  43. 43.
    K. Suzuki, Parasitic capacitance of sub-micrometer MOSFETs. IEEE Trans. Electron. Dev. 46(9), 1999 (1895-1900)Google Scholar
  44. 44.
    A. Ito, Modeling of voltage-dependent diffused resistors. IEEE Trasn. Electron Dev. 44(12), 2300–2302 (1997)CrossRefGoogle Scholar
  45. 45.
    C.C. McAndrew, T. Bettinger, Robust parameter extraction for the R3 nonlinear resistor model for diffused and poly resistors. IEEE Trans. Semiconductor Manufacturing 25(4), 255–263 (2012)CrossRefGoogle Scholar
  46. 46.
    P. Steinmann, S.M. Stuart, R. Higgins, Controlling the TCR of thin film resistors. Euro. Dev. Res. Conf., 451–453 (2000)Google Scholar
  47. 47.
    C.A. Neugebauer, M.B. Webb, Electrical conduction mechanism in ultrathin, evaporated metal films. J. Appl. Phys. 33, 74–82 (1962)CrossRefGoogle Scholar
  48. 48.
    J.R. Sambles, T.W. Preist, The effects of surface scattering upon resistivity. J. Phys. F 12, 1982 (1971-1987)Google Scholar
  49. 49.
    P. Fehlhaber, Laser trimming of SiCr thin-film resistors. IEEE IEDM Tech. Digest, 9–10 (1969)Google Scholar
  50. 50.
    R.H. Wagner, Functional laser trimming: An overview. Laser Processing of Semiconductors and Hybrids, SPIE Proceedings 611, 8–17 (1986)CrossRefGoogle Scholar
  51. 51.
    M.J. Mueller, W. Mickanin, Functional laser trimming of thin film resistors on silicon IC. Laser Processing of Semiconductors and Hybrids, SPIE Proceedings 611, 70–83 (1986)CrossRefGoogle Scholar
  52. 52.
    A.C. Adams, in Dielectric and Polysilicon Film Deposition, VLSI Technology, ed. by S. M. Sze, 2nd edn., (McGraw-Hill, 1988), pp. 259–263Google Scholar
  53. 53.
    J.L. McCreary, Matching properties, and voltage and temperature dependence of MOS capacitors. IEEE J. Solid State Circuits SC-16(6), 608–616 (1981)CrossRefGoogle Scholar
  54. 54.
    J.W. Fattaruso, M. De Wit, G. Warwar, K.S. Tan, R.K. Hester, The effect of dielectric relaxation on charge-redistribution a/D converters. IEEE J. Solid State Circuits 25(6), 1550–1561 (1990)CrossRefGoogle Scholar
  55. 55.
    K. Hyyppä, Dielectric absorption in memory capacitors. IEEE Trans. Instrum. Meas. 21(1), 53–56 (1972)CrossRefGoogle Scholar
  56. 56.
    J.C. Kuenen, G.C.M. Meijer, Measurement of dielectric absorption of capacitors and analysis of its effects on VCO. IEEE Trans. Instrum. Meas. 45(1), 89–97 (1996)CrossRefGoogle Scholar
  57. 57.
    C. Iorga, Compartmental analysis of dielectric absorption in capacitors. IEEE Trans. Dielectrics 7(2), 187–192 (2000)CrossRefGoogle Scholar
  58. 58.
    T.I. Liou, C.S. Teng, N+−poly-to-n+−silicon capacitor structure for single poly analog CMOS and BiCMOS. IEEE Trans. Electron Dev. 36(9), 1620–1628 (1989)CrossRefGoogle Scholar
  59. 59.
    S.A.S. Onge, S.G. Franz, A.F. Puttlitz, A. Kalinoski, B.E. Johnson, B. El-Kareh, Design pf precision capacitors for analog applications. IEEE Components, Hybrids, and Manufacturing Technology 15(6), 1064–1071 (1992)CrossRefGoogle Scholar
  60. 60.
    P.K. Hurley, L. Wall, A. Mathewson, Double Polysilicon capacitors in 1 μm analogue CMOS technology. European Solid-State Device Research Conference, ESSDERC, 569–572 (1993)Google Scholar
  61. 61.
    S.G. Lee, J.T. Lee, J.K. Choi, High-Q poly-to-poly capacitor for RF integrated circuits. Electronics Lett. 37(1), 25–26 (2001)CrossRefGoogle Scholar
  62. 62.
    C. Kaya, H. Trigelar, J. Paterson, M. De Wit, J. Fattsruso, R. Hester, S. Kiriaki, K.S. Tan, F. Tsay, Polycide/metal capacitors for high precision analog a/D converters. IEEE IEDM Tech. Digest, 782–785 (1988)Google Scholar
  63. 63.
    J.A. Babcock, S.G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, B. El-Kareh, Analog characteristics of metal-insulator-metal capacitors using PECVD nitride dielectrics. IEEE Trans. Electron Dev. 22(5), 230–232 (2001)CrossRefGoogle Scholar
  64. 64.
    C.H. Ng, C.S. Ho, S.F.S. Chu, S.C. Sun, MIM capacitor integration for mixed-signal/RF applications. IEEE Trans. Electron Dev. 52(7), 1399–1409 (2005)CrossRefGoogle Scholar
  65. 65.
    K. Stein, J. Kocis, G. Hueckel, E. Eid, T. Bartush, R. Groves, N. Greco, D. Harame, T. Tewksbury, High reliability metal insulator metal capacitors for silicon germanium analog applications. IEEE BCTM Tech. Digest, 191–194 (2007)Google Scholar
  66. 66.
    C.N. Ng, K.W. Chew, S.F. Chu, Characterization and comparison of PECVD silicon nitride and silicon Oxynitride dielectric for MIM capacitors. IEEE Electron Dev. Lett. 24(8), 506–508 (2003)CrossRefGoogle Scholar
  67. 67.
    T. Yoshitomi, Y. Ebuchi, H. Kimijima, T. Ohguro, E. Morifuji, H.S. Momose, K. Kasai, K. Ishimaru, F. Matruoka, Y. Katsumata, M. Kinogawa, H. Iwai, High performance MIM capacitor for RF BiCMOS/CMOS LSIs. IEEE BCTM Tech. Digest, 133–136 (1999)Google Scholar
  68. 68.
    M. Armacost, A. Augustin, P. Felsner, Y. Feng, G. Friese, J. Heidenreich, G. Hueckel, O. Prigge, K. Stein, A high reliability metal insulator metal capacitor for 0.18 μm copper technology. IEEE IEDM Tech. Digest, 157–160 (2000)Google Scholar
  69. 69.
    R. Liu, C.Y. Lin, E. Harris, S. Merchant, S.W. Downey, G. Weber, N.A. Ciampa, W.T. Warren, Y.C. Lai, M.D. Morris, J.E. Bowe, J.F. Miner, J. Frackoviak, W. Mansfield, D. Barr, R. Keller, C.P. Chang, C.S. Pai, S.N. Rogers, R. Gregor, Single mask metal-insulator-metal (MIM) capacitor with copper damascene metallization for sub-0.18mm mixed mode signal and system-on-a-chip (SoC) applications. IEEE IITC, 111–113 (2000)Google Scholar
  70. 70.
    R. Mahnkopf, K.H. Allers, M. Armacost, A. Augustin, J. Barth, G. Brase, R. Busch, E. Demm, G. Dietz, B. Flietner, G. Friese, F. Grellner, K. Han, R. Hannon, H. Ho, M. Hoinkis, K. Holloway, T. Hook, S. Iyer, P. Kim, G. Knoblinger, B. Lemaitre, G. Lin, R. Mih, W. Neumueller, J. Pape, O. Prigge, N. Robson, N. Rovedo, T. Schafbauer, T. Schiml, K. Schruefer, S. Srinivasan, M. Setter, F. Towler, P. Wensley, C. Wann, R. Wong, R. Zoellner, B. Chen, ‘System on a Chip’ technology platform for 0.18 μm digital, mixed signal & eDRAM applications. IEEE IEDM Tech. Digest, 849–842 (1999)Google Scholar
  71. 71.
    P. Zurcher, P. Alluri, P. Chu, A. Duvallet, C. Happ, R. Henderson, J. Mendonca, M. Kim, M. Oetras, M. Raymond, T. Remmel, D. Roberts, B. Steimle, J. Stipanuk, S. Straub, T. Sparks, M. Tatabbia, H. Thibieroz, M. Miller, Integration of thin film MIM capacitors and resistors into copper metallization based RF-CMOS and bi-CMOS technologies. IEEE IEDM Tech. Digest, 153–156 (2000)Google Scholar
  72. 72.
    R. Henderson, P. Zurcher, A. Duvallet, C. Happ, M. Petras, M. Raymond, T. Rommel, D. Roberts, B. Steimle, S. Straub, T. Sparks, M. Tarabbia, M. Miller, Tantalum nitride thin film resistors for integration into copper metallization based TF-CMOS and BiCMOS technology platforms. Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Tech. Digest, 71–74 (2001)Google Scholar
  73. 73.
    P. Riess, P. Baumgartner, Temperature dependent dielectric absorption of MIM capacitors: RF characterization and modeling. ESSDERC, 459–462 (2006)Google Scholar
  74. 74.
    H. Hu, C.X. Zhu, Y.F. Lu, M.F. Li, B.J. Cho, W.K. Choi, A high-performance MIM capacitor using HfO2 dielectrics. IEEE Electron Dev. Lett. 23(9), 514–516 (2001)Google Scholar
  75. 75.
    C.X. Zhu, H. Hu, X.F. Yu, A.J. Kim, A. Chin, M.F. Lee, Voltage and temperature dependence of capacitance of high-K HfO2 MIM capacitors: A unified understanding and prediction. IEEE IEDM Tech. Digest, 879–882 (2003)Google Scholar
  76. 76.
    T. Ishikawa, D. Kodoma, Y. Matsui, M. Hiratani, T. Furusawa, D. Hisamoto, High-capacitance cu/Ta2O5/cu MIM structure for SoC applications featuring a single mask add-on process. IEEE IEDM Tech. Digest, 940–943 (2002)Google Scholar
  77. 77.
    H. Hu, C.X. Zhu, X.F. Yu, A. Chin, M.F. Li, B.J. Cho, D.L. Kwong, P.D. Foo, M.B. Yu, X.Y. Liu, J. Winkler, MIM capacitor using atomic-layer-deposited high-K (HfO2)1-x(Al2O3)x dielectrics. IEEE Electron Dev. Lett. 24(2), 60–62 (2003)CrossRefGoogle Scholar
  78. 78.
    J.M. Park, M.W. Song, W.H. Kim, P.K. Park, W.K. Jung, J.Y. Kim, S.J. Won, J.H. Lee, N.I. Lee, H.K. Kang, Mass production worthy MIM capacitor on gate polysilicon (MIM-COG) structure using HfO2/HfOxCyNz/HfO2 dielectric for analog/RF/mixed signal applications. IEEE IEDM Tech. Digest, 993–996 (2007)Google Scholar
  79. 79.
    Y.K. Yeong, S.J. Won, D.J. Kwon, M.W. Song, W.H. Kim, M.H. Park, J.H. Jeong, H.S. Oh, H.K. Kang, K.P. Suh, High quality high-k capacitor by Ta2O5/HfO2/Ta2O5 multi-layer dielectric and NH3 plasma interface treatment for mixed-signal/RF applications. VLSI Symp. Tech. Digest, 222–223 (2004)Google Scholar
  80. 80.
    S.J. Kim, B.J. Cho, M.F. Li, S.J. Ding, C.X. Zhu, M.B. Yu, B. Narayanan, A. Chin, D.M. Lee, Improvement of voltage linearity in high-k MIM capacitors using HfO2-SiO2 stacked dielectric. IEEE Electron Dev. Lett. 25(8) (2004)Google Scholar
  81. 81.
    C. Besset, S. Bruyere, F. Monsieur, S. Boret, E. Deloffre, E. Vincent, Stability of capacitance voltage linearity for high-K MIM capacitor. IEEE IRPS, 586–587 (2005)Google Scholar
  82. 82.
    H. Samavati, A. Hajimiri, A.R. Shahani, G.N. Nasserbakht, T.H. Lee, Fractal capacitors. IEEE J. Solid State Circuits 33(12), 2035–2041 (1998)CrossRefGoogle Scholar
  83. 83.
    R. Aparicio, A. Hajimiri, Capacity limits and matching properties of lateral flux integrated capacitors. Custom Integrated Circuits Conference, 365–368 (2001)Google Scholar
  84. 84.
    R. Aparicio, A. Hajimiri, Capacity limits and matching properties of integrated capacitors. IEEE J. Solid State Circuits 37(3), 384–393 (2002)CrossRefGoogle Scholar
  85. 85.
    T. Moselhy, H. Ghali, H.F. Ragair, H. Haddara, Investigation of space filling capacitors. International Conf. on Microelectronics, 287–290 (2003)Google Scholar
  86. 86.
    C. Gimeno, S. Celma, B. Calvo, J. Revuelto, Hilbert curve based lateral flux capacitors. Proceeding of the 2009 Spanish Conf. on Electron Devices, 219–222 (2009)Google Scholar
  87. 87.
    Y. Morandini, J.-F. Larchanchel, C. Gaquiere, Evaluation of SiGeC HBT varactor using different collector access and base-collector junction configuration in BiCMOS technologies. IEEE BCTM Tech. Digest, 246–249 (2007)Google Scholar
  88. 88.
    M.H. Norwood, E. Shatz, Voltage variable capacitor tuning: A review. Proc. IEEE 56(5), 788–798 (1968)CrossRefGoogle Scholar
  89. 89.
    B. El-Kareh, S. Balster, W. Leitz, P. Steinmann, H. Yasuda, M. Corsi, K. Dawoodi, C. Dirnecker, P. Flgietti, A. Haeusler, P. Menz, M. Ramin, T. Scharnagl, M. Schiekoffer, M. Schober, U. Schulz, L. Swanson, D. Tatman, M. Waitschull, J.W. Weijtmans, C. Willis, A 5V complementary-SiGe BiCMOS technology for high-speed precision analog circuits. IEEE BCTM, 211–214 (2003)Google Scholar
  90. 90.
    P.J. Kannan, S. Ponczak, J.A. Olmstead, Design considerations of hyperabrupt varactor diodes. IEEE Trans. Electron Dev. ED-18(2), 109–115 (1971)CrossRefGoogle Scholar
  91. 91.
    R.A. Moline, G.F. Foxhall, Ion-implanted hyperabrupt junction voltage variable capacitors. IEEE Trans. Elecron Dev. ED-19(2), 267–273 (1972)CrossRefGoogle Scholar
  92. 92.
    S.M. Sze, Semiconductor Devices, Physics and Technology (Wiley, 1985), p. 87Google Scholar
  93. 93.
    T. Soorapanth, C.P. Yue, D.K. Shaeffer, T.H. Lee, S.S. Wong, Analysis and optimization of accumulation-mode varactor for RF ICs. IEEE Symp.VLSI Circuits, Tech. Digest, 32–33 (1998)Google Scholar
  94. 94.
    R. Castello, P. Erratico, S. Manzini, F. Svelto, A 305 tuning range varactor compatible with future scaled technologies. IEEE VLSI Circuits, Tech. Digest, 34–35 (1998)Google Scholar
  95. 95.
    F. Svelto, P. Erratico, S. Manzini, R. Castello, A metal-oxide-semiconductor varactor. IEEE Electron Dev. Lett. 20(4), 164–166 (1999)CrossRefGoogle Scholar
  96. 96.
    K.A. Jenkins, H. Ainapan, Characteristics of submicron MOS varactors. SiRF Tech. Digest, 123–126 (2006)Google Scholar
  97. 97.
    A.S. Porret, T. Melly, C.C. Enz, E.A. Vittoz, Design of high-Q varactors for low-power wireless applications using a standard CMOS process. IEEE J. Solid State Circuits 35(3), 335–345 (2000)CrossRefGoogle Scholar
  98. 98.
    H. Xu, K.K. O, High-Q thick-gate-oxide MOS varactors with subdesign-rule channel lengths for millimeter-wave applications. IEEE Electron Dev. Lett. 29(4), 363–365 (2008)CrossRefGoogle Scholar
  99. 99.
    R. Bunch, S. Raman, A 0.35 μm CMOS 2.5 GHz complementary – gm VCO using PMOS inversion mode varactors. RFIC Symp., Tech. Digest, 49–52 (2001)Google Scholar
  100. 100.
    P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs” IEEE J. Solid-State Circuits 35(6), 905–910 (2000)CrossRefGoogle Scholar
  101. 101.
    C.Y. Wu, C.Y. Yu, A 0.8V 5.9GHz wide tuning range CMOS VCO using inversion-mode band switching varactors. IEEE International Symp on Circuits and Systems (ISCAS), 5079–5062 (2005)Google Scholar
  102. 102.
    F. Svelto, S. Manzini, R. Castello, A three terminal varactor for RF ICs in standard CMOS technology. IEEE Trans. Electron Dev. 47(5), 893–895 (2000)CrossRefGoogle Scholar
  103. 103.
    W. Wong, F. Hui, Z. Chen, K. Shen, J. Lau, Wide tuning range inversion-mode gated varactor and its application on 2-GHz VCO. Sy, p. VLSI Circuits Tech. Digest, 53–54 (1999)Google Scholar
  104. 104.
    J.N. Burghartz, K.A. Jenkins, M. Soyuer, Multilevel-spiral inductors using VLSI interconnect technology. IEEE Electron Dev. Lett. 17(9), 428–430 (1996)CrossRefGoogle Scholar
  105. 105.
    N. Sturckin, Ferric Inc., DC-DC power conversion with CMOS integrated thin-film inductors, PWRSoC 2016Google Scholar
  106. 106.
    N. Sturckin, Ferric Inc., Integrated power management with ferromagnetic thin-film power inductors, PWRSoC 2018Google Scholar
  107. 107.
    Z.X. He, M. Erturk, H. Ding, M. Moon, E. Gordon, D. Daley, A.K. Stamper, D. Coolbaugh, E. Eshun, M. Gordon, A. Joseph, S.S. Ohnge, J. Dunn, High quality passive devices fabricated inexpensively in advanced RF-CMOS technologies with Copper BEOL. Si Monolithic IC. in RF Systems, 187–190 (2007)Google Scholar
  108. 108.
    C.C. Lin, H.M. Hsu, Y.H. Chen, T. Shi, S.M. Jang, C.H. Yu, M.S. Liang, A full cu damascene metallization process for sub-0.18mm RF CMOS SoC high Q inductor and MIM capacitor application at 2.4 GHz and 5.3GHz. IEEE Proceedings of the IITC, 113–115 (2001)Google Scholar
  109. 109.
    F.W. Grover, Inductance Calculations: Working Formulas and Tables (Van Nostrand, New Yor, NY, 1947)Google Scholar
  110. 110.
    S.S. Mohan, M. del Mar Heshenson, S.P. Boyd, T.H. Lee, Simple accurate expressions for planar spiral inductors. IEEE J. Solidi-State Circuits 34(10), 1419–1424 (1999)CrossRefGoogle Scholar
  111. 111.
    A. Hastings, The Art of Analog Layout, 2nd edn. (Prentice Hall, 2005), p. 248Google Scholar
  112. 112.
    A.W. Pack, K.S. Seo, Air-gap stacked spiral inductor. IEEE Microwave and Guided Wafer Lett. 7(10), 329–331 (1997)CrossRefGoogle Scholar
  113. 113.
    W.B. Kuhn, N.M. Ibrahim, Analysis of current crowding effects in multiturn spiral inductors. IEEE Trans. Microwave Theory and Techniques 49(1), 31–38 (2001)CrossRefGoogle Scholar
  114. 114.
    C. Patrick, S.S. Wong, Physical modeling of spiral inductors on silicon. IEEE Trans. Electron Dev. 47(3), 560–567 (2000)CrossRefGoogle Scholar
  115. 115.
    M. Park, S. Lee, C.S. Kim, H.K. Yu, K.S. Nam, The detailed analysis of high Q CMOS-compatible microwave spiral inductors in silicon technology. IEEE Trans. Electron Dev. 45(9), 1953–1958 (1998)CrossRefGoogle Scholar
  116. 116.
    J.R. Long, M.A. Copeland, The modeling, and design of monolithic inductors for silicon RF ICs. IEEE J. Solid State Circuits 32(3), 357–369 (1997)CrossRefGoogle Scholar
  117. 117.
    R.J. Baker, CMOS Circuit Design, Layout, and Simulation (Wiley, 2010), pp. 813–966Google Scholar
  118. 118.
    C.T. Black, K.W. Guarini, Y. Zhang, H. Kim, J. Benedict, E. Sikorski, I.V. Babich, K.R. Mikove, High-capacity, self-assembled metal-oxide-semiconductor decoupling capacitor. IEEE Electron Dev. Lett. 25(9), 622–624 (2004)CrossRefGoogle Scholar
  119. 119.
    J. Maget, R. Kraus, M. Tiebout, A physical model of a CMOS varactor with high capacitance tuning range and its application to simulate integrated VCOs. Solid State Electron. 46, 2002 (1609-1615)Google Scholar
  120. 120.
    C.-S. Chang, C.-P. Chao, J.G.J. Chern, J.Y.-C. Sun, Advanced CMOS technology portfolio for RF IC applications. IEEE Trans. Electron Dev. 52(7), 1324–1334 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Badih El-Kareh
    • 1
  • Lou N. Hutter
    • 2
  1. 1.PIYECedar ParkUSA
  2. 2.Lou Hutter ConsultingDallasUSA

Personalised recommendations