High-Voltage and Power Transistors

  • Badih El-Kareh
  • Lou N. Hutter


This chapter focuses mainly on the drain-extended MOS (DEMOS) transistor and on the lateral double-diffused MOS (LDMOS) transistor for high-voltage/high-power applications. In both cases, the drain is extended with a lightly doped region, referred to as the drift region, to sustain the high voltage. The chapter begins with an analysis of the drift region and its optimization, typically by reduced surface field (RESURF) techniques. The transistor switching performance is then analyzed, followed by a discussion of DEMOS and LDMOS design considerations and characteristics. High-voltage and high-current effects are then described, including quasi-saturation (QS), body current, on-state breakdown, and safe operating area (SOA). The chapter concludes with selected high-voltage device applications.

Supplementary material


  1. 1.
    D. Riccardi, A. Causio, I. Filippi, A. Paleari, L.V.A. Pregnolato, P. Galbiati, BCD8 from 7 V to 70 V: a new 0.18 μm technology platform to address the evolution of applications towards smart power ICs with high logic contents. IEEE Proc. ISPSD, (2007), pp. 73–76Google Scholar
  2. 2.
    S. Pendharkar, R. Pan, T. Tamura, B. Todd, T. Efland, 7 to 30 V state-of-art power device implementation in 0.25 μm LBC7 BiCMOS-DMOS process technology.. IEEE Proc. ISPSD, (2004), pp. 419–422Google Scholar
  3. 3.
    H. Yang, W.-G. Min, X. Lin, V. Newenhouse, J. Huber, H. Xu, Z. Zhang, B. Peterson, J.K. Zuo, Low-leakage SMARTMOS 10 W technology at 0.13 μm node with optimized analog, power, and logic devices for SOC design. VLSI-TSA, (2008), pp. 111–114Google Scholar
  4. 4.
    H.L. Chou, P.C. Su, J.C.W. Ng, P.L. Wang, H.T. Lu, C.J. Lee, W.J. Syue, S.Y. Yang, Y.C. Tseng, C.C. Cheng, C.W. Yao, R.S. Liou, Y.C. Jong, J.L. Tsai, J. Cai, H.C. Tuan, C.F. Huang, J. Gong, 0.18 μm BCD technology platform with best-in-class 6 V to 70 V power MOSFETs. IEEE Proc. ISPSD, (2012), pp. 401–404Google Scholar
  5. 5.
    I-Y. Park et al., BD180 – a new 0.18 μm BCD (Bipolar-CMOS-DMOS) technology from 7 V to 60 V. IEEE Proc. ISPSD, (2008), pp. 64–67Google Scholar
  6. 6.
    H.J. Sigg, G. Vendelin, T.P. Cauge, J. Kocsis, D-MOS transistor for microwave applications. IEEE Trans. Electron Dev. 19(1), 45–53 (1972)CrossRefGoogle Scholar
  7. 7.
    C. Anghel, N. Hefyene, A. M. Ionescu, M. Vermandel, B. Bakeroot, J. Doutreloigne, R. Gillon, S. Frere, C. Maier, Y. Mourier, Investigations and physical modelling of saturation effects in Lateral DMOS transistor architectures based on the concept of intrinsic drain voltage. ESSDERC, (2001), pp. 399–402Google Scholar
  8. 8.
    J.A. Appels, H.M.J. Vaes, High voltage thin layer devices (RESURF devices). IEEE IEDM Tech. Digest, (1979), pp. 238–241Google Scholar
  9. 9.
    C. Hu, Optimum doping profile for minimum ohmic resistance and high-breakdown voltage. IEEE Trans. Electron Dev. ED-26(3), 343–344 (1979)Google Scholar
  10. 10.
    J. Baliga, Fundamentals of Power Semiconductor Devices (Springer, New York, 2008)CrossRefGoogle Scholar
  11. 11.
    A. Ludikhuize, A review of RESURF technology. IEEE Proc. ISPSD, (2000), pp. 11–18Google Scholar
  12. 12.
    C.Y. Tsai, J. Arch, T. Efland, J. Erdeljac, L. Hutter, J. Mitros, J.Y. Yang, and H.T. Yuan, Optimized 25 V, 0.34 mΩcm2 very-thin-RESURF (VTR), drain-extended IGFETs in a compressed BiCMOS process. IEEE IEDM Tech. Digest, (1996), pp. 469–472Google Scholar
  13. 13.
    M. Imam, Z. Hossain, M. Quddus, J. Adams, C. Hoggatt, T. Ishiguro, R. Nair, Design and optimization of double-RESURF high-voltage lateral devices for a manufacturable process. IEEE Trans. Electron Dev. 50(7), 1697–1701 (2003)CrossRefGoogle Scholar
  14. 14.
    Z. Hossain, M. Imam, J. Fulton, M. Tanaka, Double-RESURF 700 V N-channel LDMOS with best-in-class on-resistance. IEEE Proc. ISPSD, (2002), pp. 137–140Google Scholar
  15. 15.
    D.R. Disney, A.K. Paul, M. Darwish, R. Basecki, V. Rumennik, A new 800 V lateral MOSFET with dual conduction paths. IEEE Proc. ISPSD, (2001), pp. 399–402Google Scholar
  16. 16.
    Y. Shan, Q. Ming, Y. Zhang, B. Zhang, Design of 700 V triple RESURF nLDMOS with low on-resistance. J. Semiconductors 32(11), 114002-1–114002-4 (2011)Google Scholar
  17. 17.
    Z. Hossain, Determination of manufacturing RESURF process window for a robust 700 V double resurf LDMOS transistor. IEEE Proc. ISPSD, (2008), 133–136Google Scholar
  18. 18.
    Z. Hossain, T. Ishigwo, L. Tu, H. Corleto, F. Kuramae, R. Nair, Field-plate effects on the breakdown voltage of an integrated high-voltage LDMOS transistor. IEEE Proc. ISPSD, (2004), pp. 237–240Google Scholar
  19. 19.
    E. Flack, W. Gerlach, J. Korec, Influence of interconnections onto the breakdown voltage of planar high-voltage p-n junction. IEEE Trans. Electron Dev. 40(2), 439–447 (1993)CrossRefGoogle Scholar
  20. 20.
    N.C. Moon, K.W. Kwon, C.J. Lee, K.S. Sung, B.S. Kim, K.D. Yoo, H.S. Park, Design and optimization of 700 V HVIC technology with multi-ring isolation structure. IEEE Proc. ISPSD, (2013), pp. 151–154Google Scholar
  21. 21.
    V.A.K. Temple, Junction termination extension (JTE), a new technique for increasing avalanche breakdown voltage and controlling surface electric fields in p-n junctions. IEEE IEDM Tech. Digest, (1977), pp. 423–426Google Scholar
  22. 22.
    V.A.K Temple and W. Tantraporn, “Junction termination for near-ideal breakdown voltage in p-n junctions,” IEEE Trans. Electron Dev., ED-33(10), 1601–1608, 1986Google Scholar
  23. 23.
    J.K. Oh, M.W. Ha, M.K. Han, Y.I. Choi, A new junction termination method employing shallow trench filled oxide. IEEE Electron Dev. Lett. 25(1), 16–18 (2004)CrossRefGoogle Scholar
  24. 24.
    L. Théolier, H. Mahfoz-Kotb, K. Isoird, F. Morancho, A new junction termination using a deep trench filled with BenzoCycloButene. IEEE Electron Dev. Lett. 30(6), 667–669 (2009)CrossRefGoogle Scholar
  25. 25.
    V. Krishnamurthy, A. Gyure, P. Francis, Simple gate charge (Qg) measurement technique for on-wafer statistical monitoring and modeling of power semiconductor devices. IEEE ICMTS, (2011), pp. 98–100Google Scholar
  26. 26.
    P. Chimento, G. Lazzaro, S. Musumeci, A. Raciti, Analysis and comparison of low-voltage MOSFET devices with planar and trench-gate layouts. Conf. Integrated Power Systems (CIPS), (2006), pp. 1–6Google Scholar
  27. 27.
    N. Yasuhara, K. Matsushita, K. Nakayama, B. Tanaka, S. Hodama, A. Nakagawa, K. Nakamura, Low gate charge 30 V N-channel LDMOS for DC-DC converters. IEEE Proc. ISPSD, (2003), pp. 186–189Google Scholar
  28. 28.
    S. Xu, J. Korec, D. Jauregui, C. Kocon, S. Molly, H. Lin, G. Daum, S. Perelli, K. Barry, C. Pearce, O. Lopez, J. Herbsommer, NexFET A new power device. IEEE IEDM, (2009), pp. 145–148Google Scholar
  29. 29.
    Y.K. Choi, I.Y. Park, H.C. Lim, M.Y. Kim, C.J. Yoon, N.J. Kim, K.D. Yoo, L.N. Hutter, A versatile 30 V analog CMOS process in a 0.18 μm technology for power management applications. IEEE Proc. ISPSD, (2011), pp. 219–222Google Scholar
  30. 30.
    A. Mai, H. Rucker, Drain-extended MOS transistors capable for operation at 10 V and at radio frequencies. ESSDERC, (2010), pp. 110–113Google Scholar
  31. 31.
    J. Sonsky, A. Heringa, Dielectric Resurf: Breakdown voltage control by STI layout in standard CMOS. IEEE IEDM Tech. Digest, (2005), pp. 385–388Google Scholar
  32. 32.
    A. Heringa, J. Sonsky, J.J. Perez-Gonzalez, R.Y. Su, P.Y. Chiang, Innovative lateral field plates by gate fingers on STI regions in deep submicron CMOS. IEEE Proc. ISPSD, (2008), pp. 271–274Google Scholar
  33. 33.
    K.Y. Ko, I.Y. Park, Y.K. Choi, C.J. Yoon, J.H. Moon; K.M. Park; H.C. Lim, S.Y. Park, N.J. Kim, K.D. Yoo, L.N. Hutter, BD180LV – 0.18 μm BCD technology with best-in-class LDMOS from 7 V to 30 V. IEEE Proc. ISPSD, (2010), pp. 71–74Google Scholar
  34. 34.
    R. Pan, B. Todd, P. Hao, R. Higgins, D. Robinson, V. Drobny, W. Tian, J.L. Wang, J. Mitros, M. Huber, S. Pillai, S. Pendharkar, High voltage (up to 20 V) devices implementation in 0.13 μm BiCMOS process technology for system-on-chip (SOC) design. IEEE Proc. ISPSD, (2006), pp. 1–4Google Scholar
  35. 35.
    J. Lutz et al., Power Semiconductor Devices (Springer, Berlin, Heidelberg, 2011)CrossRefGoogle Scholar
  36. 36.
    J. Smith, A. Tessmer, L. Springer, P. Madhani, J. Erdeljac, J. Mitros, T. Efland, C.Y. Tsai, S. Pendharkar, L. Hutter, A 0.7 μm linear BiCMOS/DMOS technology for mixed-signal/power applications. IEEE BCTM, (1997), pp. 155–157Google Scholar
  37. 37.
    H. Chang, J.J. Jang, M.H. Kim, E.K. Lee, D.E. Jang, J.S. Park, JH. Jung, C.J. Yoon, S.R. Bae, C.H. Park, Advanced 0.13 μm smart power technology from 7 V to 70 V. IEEE Proc. ISPSD, (2012), pp. 217–220Google Scholar
  38. 38.
    K. Shirai, K. Yonemura, K. Watanabe, K. Kimura, Ultra-low on-resistance LDMOS implementation in 0.13 μm CD and BiCD process technologies for analog power ICs. IEEE Proc. ISPSD, (2009), pp. 77–79Google Scholar
  39. 39.
    T. Efland, C.T. Tsai, S. Pendharkar, Lateral thinking about power devices (LDMOS),” IEEE IEDM Tech. Digest, (1998), pp. 679–682Google Scholar
  40. 40.
    M.L. Kniffin, R. Thoma, J. Victory, Physical compact modeling of layout dependent metal resistance in integrated LDMOS power devices. ISPSD, (2000), pp. 173–176Google Scholar
  41. 41.
    M. Darwish, J. Huang, M. Liu, M.S. Shekar, R. Williams, M. Cornel, Scaling issues in lateral power MOSFETs. ISPSD, (2001), pp. 329–332Google Scholar
  42. 42.
    T. Efland; D. Abbott; V. Arellano; M. Buschbom; W. Chang; C. Hoffart; L. Hutter; Q. Mai; I. Nishimura; S. Pendharkar; M. Pierce; C.C. Shen, C.M. Thee, H. Vanhorn, C. Williams, LeadFrameOnChip offers integrated power bus and bond over active circuit. ISPSD, (2001), pp. 65–68Google Scholar
  43. 43.
    C. Contiero, P. Galbiati, M. Palmieri, I. Vecchi, LDMOS implementation by large tilt implant in 0.6 μm BCD5 process, flash memory compatible. IEEE Proc. ISPSD, (1996), pp. 75–78Google Scholar
  44. 44.
    A. Moscatelli, A. Merlini, G. Croce, P. Galbiati, C. Contiero, LDMOS implementation in a 0.35 μm BCD technology (BCD6). IEEE Proc. ISPSD, (2000), pp. 323–326Google Scholar
  45. 45.
    T.N. Buti, S. Ogura, N. Rovedo, K. Tobimatsu, A new asymmetrical halo source GOLD drain, (HS-GOLD) deep sub-half-micrometer n-MOSFET design for reliability and performance. IEEE Trans. Electron Dev. 18(8), 1757–1764 (1991)CrossRefGoogle Scholar
  46. 46.
    A. Hiroki, S. Odanaka, A. Hori, A high performance 0.1 μm MOSFET with asymmetric channel profile. IEEE IEDM Tech. Digest, (1995), pp. 439–442Google Scholar
  47. 47.
    C. Bulucea, S.R. Bahl, W.D. French, J.J. Yang, P. Francis, T. Harjono, V.J. Krishnamurthy, J. Tao, C. Parker, Physics, technology, and modeling of complementary asymmetric MOSFETs. IEEE Trans. Electron Dev. 57(10), 2363–2380 (2010)CrossRefGoogle Scholar
  48. 48.
    J. Victory, J. Sanchez, T. Massa, B. Welfert, Application of the MOS charge-sheet model to nonuniform doping along the channel. Solid State Electron. 38(8), 1497–1503 (1995)CrossRefGoogle Scholar
  49. 49.
    J. Victory, Z. Yan, G. Gildenblat, C. McAndrew, J. Zheng, A physically-based compact model for LDMOS transistors, in Simulation of Semiconductor Processes and Devices 1998, ed. by K. De Meyer, S. Biesemans, (Springer, Vienna, 1998), pp. 271–274CrossRefGoogle Scholar
  50. 50.
    R. Zingg, On the specific on-resistance of high-voltage and power devices. IEEE Trans. Electron Dev. 51(3), 492–499 (2004)CrossRefGoogle Scholar
  51. 51.
    X.B. Chen, M.S. Towers, P. Mawby, K. Board, High-voltage sustaining structure with embedded oppositely doped regions. IEE Proc. Cir. Dev. Syst. 146(2), 90–94 (1999)CrossRefGoogle Scholar
  52. 52.
    D.J. Coe, High voltage semiconductor device. U.S. Patent No. 4754310 A, 28 June 1988Google Scholar
  53. 53.
    X. Chen, Semiconductor power devices with alternating type high-voltage breakdown regions. U.S. Patent No. 5216275 A, 1 June 1993Google Scholar
  54. 54.
    J. Tihanyi, Power MOSFET. U.S. Patent 5438215 A, 1 Aug 1995Google Scholar
  55. 55.
    P. Kondekar, H.-S. Oh, Analysis of the breakdown voltage, the on-resistance, and the charge imbalance of a superjunction power MOSFET. J. Korean Phys. Soc. 44(6), 1565–1570 (2004)Google Scholar
  56. 56.
    G. Deboy, M. März, J.P. Stengl, H. Strack, J. Tihanyi, W. Weber, A new generation of high voltage MOSFETs breaks the limit line of silicon. IEEE IEDM, (1998), pp. 683–685Google Scholar
  57. 57.
    T. Fujihira, Theory of superjunction devices. J. Appl. Phys. 36(10), 6254–6262 (1997)CrossRefGoogle Scholar
  58. 58.
    M.A. Amberetu, C.A.T. Salama, 150-V class superjunction power LDMOS transistor switch on SOI. IEEE Proc. ISPSD, (2002), pp. 101–104Google Scholar
  59. 59.
    M.H. Kim, J.J. Kim, Y.S. Choi, C.K. Jeon, S.L. Kim, H.S. Kang, C.S. Song, A low on-resistance 700 V charge balanced LDMOS with intersected well structure. ESSDERC, (2002), pp. 367–370Google Scholar
  60. 60.
    M. Rub, M. Bar, G. Deml, H. Kapels, M. Schmitt, S. Sedlmaier, C. Tolksdorf, A. Willmeroth, A 600 V 8.7 ohm-mm2 lateral superjunction transistor. IEEE Proc. ISPSD, (2006), pp. 1–4Google Scholar
  61. 61.
    I.Y. Park, C.A.T. Salama, Super junction LDMOS transistors. IEEE Circuits and Devices Magazine, Nov/Dec (2006), pp. 10–15Google Scholar
  62. 62.
    I.Y. Park, C.A.T. Salama, CMOS compatible super junction LDMOST with N-buffer layer. IEEE Proc. ISPSD, (2005), pp. 159–161Google Scholar
  63. 63.
    M. Kodama, E. Hayashi, Y. Nishibe, T. Uesugi, Temperature characteristics of a new 100 V rated power MOSFET VLMOS (vertical LOCOS MOS). IEEE Proc. ISPSD, (2004), pp. 463–466Google Scholar
  64. 64.
    S.G. Nassif-Khalil, C.A.T. Salama, Superjunction LDMOST on a silicon-on-sapphire substrate. IEEE Trans. Electron Dev. 50(5), 1385–1391 (2003)CrossRefGoogle Scholar
  65. 65.
    S.G. Nassif-Khalil, C.A.T. Salama, SJ/RESURF LDMOST. IEEE Trans. Electron Dev. 51(7), 1185–1191 (2004)CrossRefGoogle Scholar
  66. 66.
    P. Moens, F. Bauwens, J. Baele, K. Vershinin, E. De Backer, E.M.S. Narayanan, M. Tack, XtreMOS: the first integrated power transistor breaking the silicon limit. IEEE IEDM Tech. Digest, (2006), pp. 919–922Google Scholar
  67. 67.
    A. Hastings, The Art of Analog Layout., Prentice Hall (Upper Saddle River, 2001)Google Scholar
  68. 68.
    O. Kononchuk, B. Y. Nguyen (eds.), Silicon-on-Insulator (SOI) Technology, Manufacture and Applications (Woodhead Publishing of Electronic and Optical Materials, Amsterdam, 2014)Google Scholar
  69. 69.
    P. Wessels, Smart power technologies on SOI. International Symposium on VLSI Technology, Systems and Architecture, (2011), pp. 1–2Google Scholar
  70. 70.
    S. Merchant, E. Arnold, H. Baumgart, S. Mukherjee, H. Pein, R. Pinker, Realization of high breakdown voltage (> 700 V) in thin SOI devices. IEEE Proc. ISPSD, (1991), pp. 31–35Google Scholar
  71. 71.
    H.J. Schulze, R. Kunhnert, Realization of a high-voltage planar junction termination for power devices. Solid State Electron. 32, 175–176 (1989)CrossRefGoogle Scholar
  72. 72.
    T. Letavic, E. Arnold, M. Simpson, R. Aquino, H. Bhimnathwala, R. Egloff, A. Emmerik, S. Wong, S. Mukherjee, High performance 600 V smart power technology based on thin layer silicon-on-insulator. IEEE Proc. ISPSD, (1997), pp. 49–52Google Scholar
  73. 73.
    S. Merchant, T. Efland, S. Haynie, W. Headen, K. Kajiyama, S. Paiva, R. Shaw, I. Tachikake, T. Tani, C.Y. Tsai, Robust 80 V LDMOS and 100 V DECMOS in a streamlined SOI technology for analog power applications. IEEE Proc. ISPSD, (2002), pp. 185–188Google Scholar
  74. 74.
    R. Constapel, J. Korec, Forward blocking characteristics of SOI power devices at high temperature. IEEE Proc. ISPSD, (1994), pp. 117–121Google Scholar
  75. 75.
    H. Yang, J. Zuo, Z. Zhang, W. Min, X. Lin, X. Cheng, M. L. Ger, P. Hui, P. Rodriquez, Approach to the silicon limit: advanced NLDMOS in 0.13 μm SOI technology for automotive and industrial applications up to 110 V. IEEE Proc. ISPSD, (2013), pp. 357–360Google Scholar
  76. 76.
    M. Berkhout, An integrated 200-W class-D audio amplifier. IEEE JSSC 38(7), 1198–1206 (2003)Google Scholar
  77. 77.
    P.L. Hower, S. Pendharkar, T. Efland, Current status and future trends in silicon power devices. IEEE IEDM Tech. Digest, (2010), pp. 308–311Google Scholar
  78. 78.
    S.Y. Kim, J.J. Kim, H. Prosack, Novel lateral 700 V DMOS for integration: ultra-low 85 mΩ-cm2 on-resistance, 750 V LFCC. IEEE Proc. ISPSD, (2012), pp. 185–189Google Scholar
  79. 79.
    R.Y. Su, F. J. Yang, J.L. Tsay, C. C. Cheng, R. S. Liou, and H. C. Tuan, State-of-the-art device in high voltage power ICs with lowest on-state resistance. IEEE IEDM Tech Digest, (2010), pp. 492–495Google Scholar
  80. 80.
    R.P. Zingg, I. Weijland, H. van Zwol, P. Boos, T. Lavrijsen, T. Schoenmakers, 850 V DMOS-switch in silicon on-insulator with specific Ron of 13 Ω-mm2. IEEE SOI Conf., (2000), pp. 62–63Google Scholar
  81. 81.
    R.V.H. Booth, C.C. McAndrew, A 3-terminal model for diffused and ion-implanted resistors. IEEE Trans. Electron Dev. 44(5), 809–814 (1997)CrossRefGoogle Scholar
  82. 82.
    J. Jang, O. Tornblad, T. Arnborg, Q. Chen, K. Banerjee, Z. Yu, R.W. Dutton, RF LDMOS characterization and its compact modeling. IEEE MTT-S Int. Microw. Symp. Dig. 2, 967–970 (2001)Google Scholar
  83. 83.
    K. Ben Ali, C.R. Neve, A. Gharsallah, J.P. Raskin, RF performance of SOI CMOS technology on commercial 200-mm enhanced signal integrity high resistivity SOI substrate. IEEE Trans. Electron Dev. 61(3), 722–727 (2014)CrossRefGoogle Scholar
  84. 84.
    E. Arnold, T. Letavic, S. Merchant, H. Bhimnathwala, High-temperature performance of SOI and bulk-silicon RESURF LDMOS transistors. IEEE Proc. ISPSD, (1996), pp. 93–96Google Scholar
  85. 85.
    E. Arnold, H. Pein, S. Herko, Comparison of self-heating effects in bulk- silicon and SOI high-voltage devices. IEEE IEDM, (1994), pp. 813–816Google Scholar
  86. 86.
    J.A. Van der Pol, A.W. Ludikhuize, H.G.A. Huizing, B. van Velzen, R.J.E. Hueting, J.F. Mom, G. van Lijnschoten, G.J.J. Hessels, E.F. Hooghoudt, R. van Huizen, M.J. Swanenberg, J.H.H.A. Egbers, F. van den Elshout, J.J. Koning, H. Schligtenhorst, J. Soeteman, A-BCD: An economic 100 V RESURF silicon-on-insulator BCD technology for consumer and automotive applications. IEEE Proc. ISPSD, (2000), pp. 327–330Google Scholar
  87. 87.
    A.W. Ludikhuize, J.A. van der Pol, A. Heringa, A. Padiy, E.R. Ooms, P. van Kessel, G.J.J. Hessels, M.J. Schwanenberg, B. van Velzen, H. van der Vlist, J.H.H.A. Egbers, M. Stoutjesdijk, Extended (180 V) voltage in 0.6 μm thin-layer-SOI A-BCD3 technology on 1 μm BOX for display, automotive & consumer applications. IEEE ISPSD Proc, (2002), pp. 77–80Google Scholar
  88. 88.
    S. Shimamoto, Y. Yanagida, S. Shirakawa, K. Miyakoshi, T. Imai, T. Oshima, J. Sakano, S. Wada, High performance Pch-LDMOS transistors in wide range voltage from 35 V to 200 V SOI LDMOS platform technology. IEEE Proc. ISPSD, (2011), pp. 44–47Google Scholar
  89. 89.
    M. Qiao, X. Zhou, Y. He, H. Wen, Y. Zhao, B. Zhang, Z. Li, 300-V high-side thin-layer-SOI field pLDMOS with multiple field plates based on field implant technology. IEEE Electron Dev. Lett. 33(10), 1438–1440 (2012)CrossRefGoogle Scholar
  90. 90.
    D.H. Lu, T. Mizushima, H. Sumida, M. Saito, H. Nakazawa, High voltage SOI P-channel field MOSFET structures. IEEE Proc. ISPSD, (2009), pp. 17–20Google Scholar
  91. 91.
    K. Zhou, X. Luo, Q. Xu, Z. Li, B. Zhang, A RESURF-enhanced p-channel trench SOI LDMOS with ultralow specific on-resistance. IEEE Trans. Electron Dev. 61(7), 2466–2472 (2014)CrossRefGoogle Scholar
  92. 92.
    B.S. Kumar, M. Shrivastava, Part I: On the unification of physics of quasi-saturation in LDMOS devices. IEEE Trans Electron Dev. 65(1), 191–198 (2018)CrossRefGoogle Scholar
  93. 93.
    J.L. Sanchez, M. Gharbi, H. Tranduc, P. Rossel, Quasisaturation effect in high-voltage VDMOS transistors. IRE Proc. 112(pt. 1, 1), 42–46 (1985)Google Scholar
  94. 94.
    M.N. Darwish, Study of the quasi-saturation effect in VDMOS transistors. IEEE Trans. Electron Dev. ED-33(11), 1710–1716 (1986)CrossRefGoogle Scholar
  95. 95.
    Y.S. Chauhan, C. Anghel, F. Krummenacher, C. Maier, R. Gillon, B. Bakeroot, B. Desoete, S. Frere, A.B. Desormeaux, A. Sharma, M. Declercq, A.M. Ionescu, Scalable general high voltage MOSFET model including quasi- saturation and self-heating effects. Solid State Electron. 50(11), 1801–1813 (2006)CrossRefGoogle Scholar
  96. 96.
    D.M. Caughey, R.E. Thomas, Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE 55(12), 2192–2193 (1967)CrossRefGoogle Scholar
  97. 97.
    C.T. Kirk, Jr., A theory of transistor cut-off frequency fall-off at high current densities. IEEE Trans. Electron Dev. ED-9(2), 164–174 (1962)Google Scholar
  98. 98.
    M. Knaipp, G. Röhrer, R. Minixhofer, E. Seebacher, Investigations on the high current behavior of lateral diffused high-voltage transistors. IEEE Trans. Electron Dev. 51(10), 1711–1720 (2004)CrossRefGoogle Scholar
  99. 99.
    A. Canepari, G. Bertrand, A. Giry, M. Minondo, F. Blanchet, H. Jaouen, B. Reynard, N. Jourdan, J.P. Chante, LDMOS modeling for analog and RF circuit design. IEEE Proc. ISPSD, (2005), pp. 469–472Google Scholar
  100. 100.
    S.F. Frère, P. Moens, B. Desoete, D. Wojciechowski, A.J. Walton, An improved transistor model that accurately predicts capacitance for all bias conditions. IEEE Proc. ICMTS 18, 75–79 (2005)Google Scholar
  101. 101.
    A.C.T. Aarts, W.J. Kloosterman, Compact modeling of high-voltage LDMOS devices including quasi-saturation. IEEE Trans. Electron Dev. 53(4), 897–902 (2006)CrossRefGoogle Scholar
  102. 102.
    L. Wang, J. Wang, C. Gao, J. Hu, P. Li, S.H.Y. Yang, Physical description of quasi-saturation and impact ionization effects in high-voltage drain extended MOSFETs. IEEE Trans. Electron Dev. 56(3), 492–498 (2009)CrossRefGoogle Scholar
  103. 103.
    Y. Shi, N. Feilchenfeld, R. Phelps, M. Levy, M. Knaipp, R. Minixhofer, Drift design impact on quasi-saturation & HCI for scalable N-LDMOS. IEEE Proc. ISPSD, (2011), pp. 215–218Google Scholar
  104. 104.
    W. Yao, G. Gildenblat, C.C. McAndrew, A. Cassagnes, SP-HV: A scalable surface-potential-based compact model for LDMOS transistors. IEEE Trans. Electron Dev. 59(3), 542–550 (2012)CrossRefGoogle Scholar
  105. 105.
    W. Wang, B. Tudor, X. Xi, W. Liu, F.J. Lee, An accurate and robust compact model for high-voltage MOS IC simulation. IEEE Trans. Electron Dev. 60(2), 662–669 (2013)CrossRefGoogle Scholar
  106. 106.
    C.C. McAndrew, A. Lorenzo-Cassgnes, P. Goyhenetche, J. Pigott, W. Yao, G. Gildenblat, J. Victory, Advances in LDMOS compact modeling for IC design. IEEE Solid-State Circuits Magazine, (June 2014), pp. 35–46CrossRefGoogle Scholar
  107. 107.
    P.L. Hower, J. Lin, S. Merchant, Snapback and safe operation area of LDMOS transistors. In IEEE IEDM Tech. Digest, (1999), pp. 193–196Google Scholar
  108. 108.
    S.K. Lee, C.J. Kim, J.H. Kim, Y.C. Choi, H.S. Kang, C.S. Song, Optimization of safe-operating-area using two peaks of body-current in submicron LDMOS transistors. IEEE Proc. ISPSD, (2001), pp. 287–290Google Scholar
  109. 109.
    P.L. Hower, J. Lin, S. Pendharkar, B. Hu, J. Arch, J. Smith, T. Efland, A rugged LDMOS for LBC5 technology. IEEE Proc. ISPSD, (2005), pp. 159–162Google Scholar
  110. 110.
    S. Reggiani, E. Gnani, A. Gnudi, G. Baccarani, M. Denison, S. Pendharkar, R. Wise, S. Seetharaman, Investigation on saturation effects in the rugged LDMOS transistor. IEEE Proc. ISPSD, (2009), pp. 208–211Google Scholar
  111. 111.
    K. Kinoshita, Y. Kawaguchi, A. Nakagawa, A new adaptive RESURF concept for 20 V LDMOS without breakdown voltage degradation at high current. IEEE Proc. ISPSD, (1998), pp. 65–68Google Scholar
  112. 112.
    S. Pendharkar, T. Efland, C. Tsai, Analysis of high current breakdown and UIS behavior of RESURF LDMOS (RLDMOS) devices. IEEE Proc. ISPSD, (1998), pp. 419–422Google Scholar
  113. 113.
    Y.S. Chung, B. Baird, Electrical-thermal coupling mechanism on operating limit of LDMOS transistor. IEEE IEDM Tech. Digest, (2000), pp. 83–86Google Scholar
  114. 114.
    W.R. Curtice, J.A. Pla, D. Bridges, T. Liang, E.E. Shumate, A new dynamic electro-thermal nonlinear model for silicon RF LDMOS FETs. IEEE MTT-S Digest, (1999), pp. 419–422Google Scholar
  115. 115.
    J. McPherson, Reliability Physics and Engineering (Springer, Heidelberg, 2013)CrossRefGoogle Scholar
  116. 116.
    C. Anghel, R. Gillon, A.M. Ionescu, Self-heating characterization and extraction method for thermal resistance and capacitance in HV MOSFETs. IEEE Elec. Dev. Letters 25(3), 141–143 (2004)CrossRefGoogle Scholar
  117. 117.
    B.M. Tenbroek, S.L. Lee, W. Redman-White, R.J.T. Bunyan, M.J. Uren, Impact of self-heating and thermal coupling on analog circuits in SOI CMOS. IEEE J. Solid-State Circuits 33(7), 1037–1046 (1988)CrossRefGoogle Scholar
  118. 118.
    Y.K. Leung, A.K. Paul, K.E. Goodson, J.D. Plummer, S.S. Wong, Heating mechanisms of LDMOS and LIGBT in ultrathin SOI. IEEE Electron Dev. Lett. 18(7), 414–416 (1997)CrossRefGoogle Scholar
  119. 119.
    W. Jin, W. Liu, S.K.H. Fung, P.C.H. Chan, C. Hu, SOI thermal impedance extraction methodology and its significance for circuit simulation. IEEE Trans. Electron. Dev. 48(4), 730–736 (2001)CrossRefGoogle Scholar
  120. 120.
    J. Roig, J. Urresti, I. Cortés, D. Flores, S. Hidalgo, J. Millán, Efficiency of SOI-like structures for reducing the thermal resistance in thin-film SOI power LDMOSFETs. IEEE Electron Dev. Lett. 25(11), 743–745 (2004)CrossRefGoogle Scholar
  121. 121.
    P. Baine, J.H. Montgomery, B.M. Armstrong, H.S. Gamble, S.J. Harrington, S. Nigrin, R. Wilson, K.B. Oo, A.G. Armstrong, S. Suder, Improved thermal performance of SOI using a compound buried layer. IEEE Trans. Electron Dev. 61(6), 1999–2006 (2014)CrossRefGoogle Scholar
  122. 122.
    W. Yao, G. Gildenblat, C.C. McAndrew, A. Cassagnes, Compact model of impact ionization in LDMOS transistors. IEEE Trans. Electron Dev. 50(7), 1863–1869 (2012)CrossRefGoogle Scholar
  123. 123.
    S. Poli, S. Reggiani, M. Denison, E. Gnani, A. Gnudi, G. Baccarani, S. Pendharkar, R. Wise, Temperature dependence of the threshold voltage shift induced by carrier injection in integrated STI-based LDMOS transistors. IEEE Electron Dev. Lett. 32(6), 791–793 (2011)CrossRefGoogle Scholar
  124. 124.
    P.L. Hower, C.Y. Tsai, S. Merchant, T. Efland, S. Pendharkar, R. Steinhoff, J. Brodsky, Avalanche-induced thermal instability in LDMOS transistors. IEEE Proc. ISPSD, (2001), pp. 153–156Google Scholar
  125. 125.
    G. Dolny, G. Nostrand, K. Hill, The effect of temperature on lateral DMOS transistors in a power IC technology. IEEE Trans. Electron Dev. 30(4), 990–995 (1992)CrossRefGoogle Scholar
  126. 126.
    N.D. Arora, G.S. Gildenblat, A semi-empirical model of the MOSFET inversion layer mobility for low-temperature operation. IEEE Trans. Electron Dev. ED-34(1), 89–93 (1987)CrossRefGoogle Scholar
  127. 127.
    R. Zuleeg, K. Lehovec, Temperature dependence of the saturation current of MOSTs. IEEE Trans. Electron Dev., ED-15(12), 987–989 (1968)CrossRefGoogle Scholar
  128. 128.
    R.S.C. Cobbold, Temperature effects in M.O.S. transistors. Electronics Lett. 2(6), 190–191 (1966)CrossRefGoogle Scholar
  129. 129.
    D. Yang, L. Zhang, Y. Wang, Z. Yu, An Efficient Compact Model for LDMOS with Self-Heating Effects. Intnl. Conf. Solid-State and Integrated-Circuit Tech., (2008), pp. 313–316Google Scholar
  130. 130.
    J. Zhang, A Physics-based LDMOS model and a simple characterization method for self-heating effect on power device. IEEE Electron Devices and Solid-State Circuits, (2007), pp. 781–783Google Scholar
  131. 131.
    S.A. Schwarz, S.E. Russek, Semi-empirical equations for electron velocity in silicon: Part I - Bulk. IEEE Trans. Electron Dev. 30(12), 1629–1633 (1983)CrossRefGoogle Scholar
  132. 132.
    C. Jacobini, C. Canali, G. Ottaviani, A. Alberigi-Quaranta, A review of some charge transport properties of silicon. Solid State Electron. 20(2), 77–89 (1977)CrossRefGoogle Scholar
  133. 133.
    S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, Wien/New York, 1984)CrossRefGoogle Scholar
  134. 134.
    T.Y. Chan, S.W. Lee, H. Gaw, Experimental characterization and modeling of electron saturation velocity in MOSFET’s inversion layer from 90 to 350 K. IEEE Electron Dev. Lett. 11(10), 466–468 (1990)CrossRefGoogle Scholar
  135. 135.
    S.S. Rofail, M.A. Chaudhry, The temperature dependence of breakdown voltage and on-resistance of LDMOS’s. IEEE Trans. Electron Dev. 34(4), 933–935 (1987)CrossRefGoogle Scholar
  136. 136.
    M.J. Declercq, J.D. Plummer, Avalanche breakdown in high-voltage D-MOS devices. IEEE Trans Electron Dev. ED-32(1), 1–4 (1976)CrossRefGoogle Scholar
  137. 137.
    P.L. Hower, S. Pendharkar, Short and long-term safe operating area considerations in LDMOS transistors. IEEE IRPS, (2005), pp. 545–550Google Scholar
  138. 138.
    M. Denison, M. Pfost, K.W. Pieper, S. Markl, D. Metzner, M. Stecher, Influence of inhomogeneous current distribution on the thermal SOA of integrated DMOS transistors. IEEE Proc. ISPSD, (2004), pp. 409–412Google Scholar
  139. 139.
    P.L. Hower, P.K. Govil, Comparison of one- and two-dimensional models of transistor thermal instability. IEEE Trans. Electron Dev. 21(10), 617–623 (1974)CrossRefGoogle Scholar
  140. 140.
    P. Moens, G. Van den Bosch, Characterization of total safe operating area of lateral DMOS transistors. IEEE Trans. on Elec. Mat. Rel. 6(3), 349–357 (2006)CrossRefGoogle Scholar
  141. 141.
    V. Benda, J. Gowar, D.A. Grant, Power Semiconductor Devices – Theory and Applications (Wiley, Chichester, 1999)Google Scholar
  142. 142.
    M. Denison, M. Pfost, M. Stecher, D. Silber, Analysis and modeling of DMOS FBSOA limited by n-p-n leakage diffusion current. IEEE Proc. ISPSD, (2005), pp. 159–162Google Scholar
  143. 143.
    V. Dwyer, A.J. Franklin, D.S. Campbell, Electrostatic discharge thermal failure in semiconductor devices. IEEE Trans. Electron Dev. 37(11), 2381–2387 (1990)CrossRefGoogle Scholar
  144. 144.
    P. Spirito, B. Breglio, V. d’Alessandro, N. Rinaldi, Thermal instabilities in high current power MS devices: Experimental evidence, electro-thermal simulations and analytical modeling. MIEL 1, 23–30 (2002)Google Scholar
  145. 145.
    C. Ma, P. Lauritzen, A simple power diode model with forward and reverse recovery. IEEE Trans. Power Electronics 8(4), 342–346CrossRefGoogle Scholar
  146. 146.
    M. Rahimo, N. Shammas, Freewheeling diode reverse recovery failure modes in IGBT applications. IEEE Trans. Industr. Appl. 37(2), 661–670 (2001)CrossRefGoogle Scholar
  147. 147.
    J.A.R. Latorre, M.A. Jimenez, R. Palomera, Automated wafer-level measurement of LDMOS reverse recovery parameters. IEEE MWSCAS, (2012), pp. 1072–1075Google Scholar
  148. 148.
    AN2385 application note, “Power dissipation and its linear derating factor, silicon limited drain current and pulsed drain current in MOSFETs,” STMicroelectronics, revision 1, June 2006Google Scholar
  149. 149.
    A. Tsui, H. Yilmaz, I. Hshieh, M. Chang, T. Fortier, Commutating SOA capability of power DMOS FETs. IEEE APEC Proceedings, (1990), pp. 481–485Google Scholar
  150. 150.
    T. Matsudai, K. Sato, N. Yasuhara, H. Saito, K. Endo, F. Takeuchi, M. Yamamoto, 0.13 μm CMOS/DMOS platform technology with novel 8 V/9 V LDMOS for low voltage high-frequency DC-DC converters. IEEE Proc. ISPSD, (2010), pp. 315–318Google Scholar
  151. 151.
    Y.K. Choi, I.Y. Park, H.S. Oh, W. Lee, N.J. Kim,K.D. Yoo, Implementation of low Vgs (1.8 V) 12 V RF-LDMOS for high-frequency DC-DC converter applications. IEEE Proc. ISPSD, (2012), pp. 125–128Google Scholar
  152. 152.
    A. Sagneri, Design of a very high frequency dc-dc boost converter, MS thesis, MIT, 2007Google Scholar
  153. 153.
    J.M. Burkhart, R. Korsunsky, D.J. Perreault, Design methodology for a very high frequency resonant boost converter. IEEE IPEC, (2010), pp. 1902–1909Google Scholar
  154. 154.
    U.S. Department of Energy website.,
  155. 155.
    K. Billings, T. Morey, Switchmode Power Supply Handbook, 3rd edn. (McGraw-Hill Publishing, New York, 2011)Google Scholar
  156. 156.
    S. Ang, A. Oliva, Power-Switching Converters, 2nd edn. (CRC Press, Boca Raton, 2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Badih El-Kareh
    • 1
  • Lou N. Hutter
    • 2
  1. 1.PIYECedar ParkUSA
  2. 2.Lou Hutter ConsultingDallasUSA

Personalised recommendations