Analog/RF CMOS

  • Badih El-Kareh
  • Lou N. Hutter


The trade-offs between parameters are different for digital, analog, and RF CMOS. In particular, there are conflicting requirements between analog and digital CMOS on operating voltage level, reduced low-frequency noise, high output resistance, low component mismatch, and high linearity. Thus, modifications must be made to the basic digital structure to satisfy analog circuit needs. In contrast, the characteristics of RF CMOS are essentially the same as those of high-speed digital CMOS so that both designs can be integrated on the same chip with little added complexity. In this chapter we first review the characteristics of the two-terminal MOS structure. This lays the groundwork for the discussion of MOSFET and CMOS characteristics in the sections that follow, with emphasis on key analog parameters. The chapter concludes with a review of mobility enhancement techniques, high-κ dielectrics, FinFETs, and fully depleted SOI MOSFETs and a brief discussion of analog CMOS applications.


  1. 1.
    L.M. Terman, An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes. Solid State Electron. 5(5), 285–299 (1962)CrossRefGoogle Scholar
  2. 2.
    K. Lehovec, A. Slobodskoy, J.L. Sprague, Field effect-capacitance analysis of surface states on silicon. Phys. Status Solidi B 3(3), 447–464 (1963)CrossRefGoogle Scholar
  3. 3.
    A.S. Grove, B.E. Deal, E.H. Snow, C.T. Sah, Investigation of thermally oxidized silicon surfaces using metal-oxide-semiconductor structures. Solid State Electron. 8(2), 145–163 (1965)CrossRefGoogle Scholar
  4. 4.
    S.M. Sze, Physics of Semiconductor Devices (Wiley, 1981), p. 850Google Scholar
  5. 5.
    B.E. Deal, Standardized terminology for oxide charges associated with thermally oxidized silicon. IEEE Trans. Electron Dev. ED-27, 606–608 (1980)CrossRefGoogle Scholar
  6. 6.
    E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Wiley, 1982), p. 424Google Scholar
  7. 7.
    R.H. Kingston, S.F. Neustadter, Calculation of the space-charge, electric field, and free carrier concentration at the surface of a semiconductor. J. Appl. Phys. 26(6), 718–720 (1955)CrossRefGoogle Scholar
  8. 8.
    C.G.B. Garrett, W.H. Brattain, Physical theory of semiconductor surfaces. Phy. Rev. 99, 376 (1955)CrossRefGoogle Scholar
  9. 9.
    F. Stern, W.E. Howard, Properties of semiconductor surface inversion layers in the quantum limit. Phys. Rev. 163(3), 816–835 (1967)CrossRefGoogle Scholar
  10. 10.
    M.J. van Dort, P.H. Woerlee, A.J. Walker, A simple model for quantization effects in heavily-doped silicon MOSFETs at inversion conditions. Solid State Electron. 37(3), 411–414 (1994)CrossRefGoogle Scholar
  11. 11.
    S.A. Hareland, S. Krishnamurhty, S. Jallepalli, C.-F. Yeap, K. Hasnat, A.F. Tasch, C.M. Maziar, A computationally efficient model for inversion layer quantization effects in deep submicron n-channel MOSFETs. IEEE Trans. Electron Dev. 43(1), 90–96 (1996)CrossRefGoogle Scholar
  12. 12.
    C.Y. Hu, S. Barnerjee, K. Sandra, G.G. Streetman, P. Sivan, Quantization effects in inversion layers of PMOSFETs on Si(100) substrates. IEEE Electron Dev. Lett. 17(6), 276–278 (1996)CrossRefGoogle Scholar
  13. 13.
    A.G. Sabnis, J.T. Clemens, Characterization of the electron mobility in the inverted < 100 > surface. IEEE IEDM Tech. Digest, 18–21 (1979)Google Scholar
  14. 14.
    J.T. Watt, J.D. Plummer, Universal mobility-field curves for electrons and holes in MOS inversion layers. VLSI Tech. Digest, 81–82 (1987)Google Scholar
  15. 15.
    B. El-Kareh, Silicon Devices and Process Integration, Deep Submicron and Nano-Scale Technologies, Chap. 4 (Spinger, 2008)Google Scholar
  16. 16.
    R. Rios, N.D. Arora, C.L. Huang, An analytical polysilicon depletion effect model for MOSFETs. IEEE Electron Dev. Lett. 15(4), 129–131 (1994)CrossRefGoogle Scholar
  17. 17.
    P. Habăs, S. Selberherr, Numerical simulation of MOS devices with non-degenerate gate. ESSDERC, 161–164 (1990)Google Scholar
  18. 18.
    K. Schuegraf, C.C. King, C. Hu, Impact of polysilicon depletion in thin oxide MOS technology. VLSITSA, 86–90 (1993)Google Scholar
  19. 19.
    N.D. Arora, R. Rios, C.L. Huang, Modeling the polysilicon depletion effect and its impact on submicrometer CMOS circuit performance. IEEE Trans. Electron Dev. 42(5), 935–943 (1995)CrossRefGoogle Scholar
  20. 20.
    C.H. Choi, P.R. Chidambaram, R. Khamankar, C.F. Machala, Z. Yu, R.W. Dutton, Gate length dependent polysilicon depletion effects. IEEE Electron Dev. Lett 23(4), 224–226 (2002)CrossRefGoogle Scholar
  21. 21.
    A.S. Grove, O. Leistiko, W.W. Hooper, Effect of surface fields on the breakdown voltage of planar silicon p-n junctions. IEEE Trans. Electron Dev. ED-14(3), 157–162 (1967)CrossRefGoogle Scholar
  22. 22.
    W. Shockley, W.T. Read, Statistics of recombination of holes and electrons. Phys. Rev. 85(5), 835–842 (1952)zbMATHCrossRefGoogle Scholar
  23. 23.
    P. Smeys, P.B. Griffin, Z.U. Rek, I.D. Wolf, K.C. Saraswat, Influence of process-induced stress on device characteristics and its impact on scaled device performance. IEEE Trans. Electron Dev. 46(6), 1245–1252 (1999)CrossRefGoogle Scholar
  24. 24.
    W. Shockley, Problems related to p-n junctions in silicon. Solid State Electron. 2(1), 35–67 (1961)CrossRefGoogle Scholar
  25. 25.
    J.F. Verwey, R.P. Kramer, B.J. de Maagt, Mean free path of hot electrons at the surface of boron-doped silicon. J. Appl. Phys. 46(6), 2612–2619 (1975)CrossRefGoogle Scholar
  26. 26.
    B. El-Kareh, Effect of surface field on junction avalanche breakdown. IEDM Tech. Digest, 11–14 (1972)Google Scholar
  27. 27.
    T.Y. Chan, J. Chen, P.K. Ko, C. Hu, The impact of gate-induced drain leakage. IEEE IEDM, 718–721 (1987)Google Scholar
  28. 28.
    J. Chen, T.Y. Chan, J.C. Chen, C. Hu, Subthreshold drain leakage current in MOSFET. IEEE Electron Dec. Lett. EDL-8(11), 515–517 (1987)CrossRefGoogle Scholar
  29. 29.
    M.J. Chen, K.C. Chao, C.H. Chen, New observation and the modeling of gate and drain current in off-state P-MOSFETs. IEEE Trans. Electron Dev. 41(5), 734–739 (1994)CrossRefGoogle Scholar
  30. 30.
    M.M. Moslehi, C.Y. Fu, K.C. Saraswat, Thermal and microwave nitrogen plasma nitridation techniques for ultrathin gate insulators of MOS VLSI. Proc. VLSI Tech. Digest, 14–15 (1985)Google Scholar
  31. 31.
    T. Hori, H. Iwasaki, K. Tsuji, Electrical and physical properties of ultrathin reoxidized nitrided oxides prepared by rapid thermal processing. IEEE Trans. Electron Dev. 36(2), 340–350 (1989)CrossRefGoogle Scholar
  32. 32.
    H.S. Momose, T. Morimoto, Y. Ozawa, K. Yamabe, H. Iwai, Electrical characteristics of rapid thermal nitrided-oxide gate n- and p-MOSFETs with less than 1 atom% nitrogen concentration. IEEE Trans Electron Dev. 41(4), 546–551 (1994)CrossRefGoogle Scholar
  33. 33.
    K.A. Ellis, R.A. Buhrman, Nitrous oxide (N2O) processing for silicon oxynitride gate dielectrics. IBM J. Res. Dev. 413(3), 287–300 (1999)CrossRefGoogle Scholar
  34. 34.
    F.H. Gaensslen, V.L. Rideout, E.J. Walker, J.J. Walker, Very small MOSFETs for low-temperature operation. IEEE Trans. Electron Dev. ED-24(3), 218–229 (1977)CrossRefGoogle Scholar
  35. 35.
    O. Leistiko, A.S. Grove, C.T. Sah, Electron and hole mobilities in inversion layers on thermally oxidized silicon surfaces. IEEE Trans. Electron Dev. ED-12, 248–254 (1965)CrossRefGoogle Scholar
  36. 36.
    M. Bacheri, C. Turchetti, The need for an explicit model describing MOS transistors in moderate inversion. Electron. Lett. 21(19), 873–874 (1985)CrossRefGoogle Scholar
  37. 37.
    Y. Tsividis, C. McAndrew, Operation and Modeling of the MOS Transistor (Oxford University Press, 2011), p. 91Google Scholar
  38. 38.
    M. Miura-Mattausch, H.J. Mattausch, N.D. Arira, C.Y. Yang, MOSFET modeling gets physical. IEEE Circuits Dev 17(6), 29–36 (2001)CrossRefGoogle Scholar
  39. 39.
    Y. Cheng, K. Chen, K. Imai, C. Hu, ICM-An analytical inversion charge model for accurate modeling of thin gate oxide MOSFETs. IEEE SYSPAD, 109–112 (1997)Google Scholar
  40. 40.
    J.R. Schriefer, Effective carrier mobility on surface space charge layers. Phys. Rev. 97, 641–646 (1955)CrossRefGoogle Scholar
  41. 41.
    F. Fang, S. Triebwasser, Carrier surface scattering in silicon inversion layers. IBM J. Res. Dev. 8, 410–415 (1964)CrossRefGoogle Scholar
  42. 42.
    F. Stern, W.E. Howard, Properties of semiconductor surface inversion layers in the electric quantum limit. Phys. Rev. B 163, 816–835 (1967)CrossRefGoogle Scholar
  43. 43.
    F.F. Fang, A.B. Fowler, Transport properties of electrons in inverted silicon surface. Phys. Rev. 169, 616–631 (1968)CrossRefGoogle Scholar
  44. 44.
    V.G.K. Reddi, Majority carrier surface mobilities in thermally oxidized silicon. IEEE Trans. Electron Dev ED-15(3), 151–160 (1968)CrossRefGoogle Scholar
  45. 45.
    C.-T. Sah, T.H. Ning, L.L. Tschopp, The scattering of electrons by surface oxide charge and by lattice vibrations. Surf. Sci. 32, 561–575 (1972)CrossRefGoogle Scholar
  46. 46.
    T. Nishida, C.-T. Sah, A physically based mobility model for MOSFET numerical simulations. IEEE Trans. Electron Dev. 34(2), 310–320 (1987)CrossRefGoogle Scholar
  47. 47.
    H. Shin, G.M. Yeric, A.F. Tasch, C.M. Maziar, Physically based models for effective mobility and local field mobility of electrons in MOS inversion channels. Solid State Electron. 34(6), 545–552 (1991)CrossRefGoogle Scholar
  48. 48.
    S.-i. Tagaki, A. Toriumi, M. Iwase, H. Tango, On the universality of inversion layer mobility in silicon MOSFETs Part I –effect of substrate impurity concentration. IEEE Trans. Electron Dev. 41(12), 2357–2362 (1994)CrossRefGoogle Scholar
  49. 49.
    J.R. Hauser, Extraction of experimental mobility data for MOS devices. IEEE Trans. Electron Dev. 43(11), 1981–1988 (1996)CrossRefGoogle Scholar
  50. 50.
    K. Chen, H.C. Wann, J. Dunster, P.K. Ko, C. Hu, MOSFET carrier mobility model based on gate oxide thickness, threshold and gate voltage. Solid State Electron. 39(10), 1515–1518 (1996)CrossRefGoogle Scholar
  51. 51.
    H.K.J. Ihantola, J.L. Moll, Design theory of a surface field-effect transistor. Solid State Electron. 7(6), 423 (1964)CrossRefGoogle Scholar
  52. 52.
    C.T. Sah, Characteristics of the metal-oxide-semiconductor transistors. IEEE Trans. Electron Dev. ED-11(7), 324–345 (1964)CrossRefGoogle Scholar
  53. 53.
    G. Baccarani, G.A. Sai-Halasz, Spreading resistance in submicron MOSFETs. IEEE Electron Device Lett. 4(2), 27–29 (1983)CrossRefGoogle Scholar
  54. 54.
    K.K. Ng, W.T. Lynch, Analysis of the gate-voltage-dependent series resistance of MOSFETs. IEEE Trans. Electron Dev. 33(7), 965–972 (1986)CrossRefGoogle Scholar
  55. 55.
    K.K. Ng, R.J. Bayruns, S.C. Fang, The spreading resistance of MOSFETs. IEEE Electron Device Lett. 6(4), 195–197 (1985)CrossRefGoogle Scholar
  56. 56.
    J.M. Pimbley, Two-dimensional current flow in the MOSFET source-drain. IEEE Trans. Electron Dev. ED-33(7), 986–996 (1986)CrossRefGoogle Scholar
  57. 57.
    B. Iňiguez, T.A. Fjeldly, Unified substrate current model for MOSFETs. Solid State Electron. 41(1), 87–94 (1997)CrossRefGoogle Scholar
  58. 58.
    J.H. Huang, G.B. Zhang, Z.H. Liu, J. Duster, S.J. Wann, P. Ko, C. Hu, Temperature dependence of MOSFET substrate current. IEEE Electron Dev. Lett. 14(5), 268–271 (1993)CrossRefGoogle Scholar
  59. 59.
    M. Nagata, J. Nagai, K. Hijikata, T. Morie, A. Iwata, Physical design guides for substrate noise reduction in CMOS digital circuits. IEEE J. Solid State Circuits 36(3), 539–548 (2001)CrossRefGoogle Scholar
  60. 60.
    M.S. Peng, H.S. Lee, Study of substrate noise and techniques for minimization. IEEE J. Solid State Circuits 39(11), 2080–2086 (2004)CrossRefGoogle Scholar
  61. 61.
    T. Blalack, B.A. Wooley, The effects of switching noise on an oversampling A/D converter. IEEE Solid-State Circuits Conf. Tech. Digest, 200, 367–201 (1995)Google Scholar
  62. 62.
    A. Hokazono, S. Balasubramanian, K. Ishimaru, H. Ishiuchi, C. Hu, T.J. King Liu, Forward body biasing as a bulk-Si CMOS technology scaling strategy. IEEE Trans. Electron Dev. 55(10), 2657–2664 (2008)CrossRefGoogle Scholar
  63. 63.
    S.K. Jayapal, Y. Manoli, Minimizing energy consumption with variable body bias for ultra-low energy LSIs. VLSI-DAT, 1–4 (2007)Google Scholar
  64. 64.
    M.R. Wordeman, R.H. Dennard, Threshold voltage characteristics of depletion-mode MOSFETs. IEEE Trans. Electron Dev. 28(9), 1025–1030 (1981)CrossRefGoogle Scholar
  65. 65.
    H. Haddara, T. Elewa, S. Christoloveanu, Static and dynamic transconductance model for depletion-mode transistors: A new characterization method for silicon on insulator materials. IEEE Electron Dev. Lett. 9(1), 35–37 (1988)CrossRefGoogle Scholar
  66. 66.
    L.D. Yau, A simple theory to predict the threshold voltage of short-channel IGFETs. Solid State Electron. 17(10), 1059–1063 (1974)CrossRefGoogle Scholar
  67. 67.
    O. Jaentsch, A geometrical model of the threshold voltage of short and narrow-channel MOSFETs. Solid State Electron. 25(1), 59–61 (1982)CrossRefGoogle Scholar
  68. 68.
    R.R. Troutman, VLSI limitations from drain-induced barrier lowering. IEEE Trans. Electron Dev. ED-26(4), 461–469 (1979)CrossRefGoogle Scholar
  69. 69.
    T.H. Nguyen, J.D. Plummer, Physical mechanisms responsible for short channel effects in MOS devices. IEEE IEDM Tech. Digest, 596–599 (1981)Google Scholar
  70. 70.
    C.-Y. Wu, S.-Y. Yang, An analytic and accurate model for the threshold voltage of short channel MOSFETs in VLSI. Solid State Electron. 27(7), 651–658 (1984)MathSciNetCrossRefGoogle Scholar
  71. 71.
    S.C. Jain, P. Balk, A unified analytical model for drain-induced barrier lowering and drain-induced high electric field in a short-channel MOSFET. Solid State Electron. 30(5), 503–511 (1987)CrossRefGoogle Scholar
  72. 72.
    P.E. Cottrell, E.M. Buturla, Steady state analysis of field effect transistors via the finite element method. IEEE IEDM Tech. Digest, 51–54 (1975)Google Scholar
  73. 73.
    S. Selberherr, MINIMOS - A two-dimensional MOS transistor analyzer. IEEE Trans. Electron Dev. ED-27(8), 1440–1560 (1980)Google Scholar
  74. 74.
    W.P. Noble, Short channel effects in dual gate field effect transistors. IEEE IEDM Tech. Digest, 483–486 (1978)Google Scholar
  75. 75.
    T. Hori, K. Kurimoto, A new half-micron p-channel MOSFET with LATIPs (“Large-Tilt-Angle-Implanted-Punch-Through Stopper”). IEEE IEDM Tech. Digest, 394–397 (1988)Google Scholar
  76. 76.
    H. Wakabayashi, M. Ueki, M. Narihiro, T. Fukai, N. Ikezawa, T. Matsuda, K. Yishida, K. Takeuchi, Y. Ochiai, T. Mogami, T. Kunio, Sub-50-nm physical gate length CMOS technology and beyond using steep halo. IEEE Trans. Electron Dev. 49(1), 89–95 (2002)CrossRefGoogle Scholar
  77. 77.
    A. Chatterjee, K. Visanth, D.T. Glider, M. Nandakumar, G. Pollack, R. Aggarwal, M. Rodder, H. Shichijo, Transistor design issues in integrated analog functions with high performance digital CMOS. VLSI Tech. Digest, 147–148 (1999)Google Scholar
  78. 78.
    L.N. Hutter, J.R. Hellums, Analog CMOS technology (Smicon Japan, Tokyo, 1999)Google Scholar
  79. 79.
    J.G. Ruch, Electron dynamics in short channel field-effect transistors. IEEE Trans. Electron Dev. ED-19(5), 652–654 (1972)CrossRefGoogle Scholar
  80. 80.
    G. Baccarani, M.R. Wordeman, An investigation of steady-state velocity overshoot in silicon. Solid State Electron. 28(4), 407–416 (1985)CrossRefGoogle Scholar
  81. 81.
    G.A. Sai-Halasz, M.R. Wordemann, D.P. Kern, S. Rischton, E. Ganin, High transconductance and velocity overshoot in NMOS devices at the 0.1-μm gate-length level. IEEE Electron Dev. Lett. 9(9), 464–466 (1988)CrossRefGoogle Scholar
  82. 82.
    S.Y. Chou, D.A. Antoniadis, H.I. Smith, Observation of electron velocity overshoot in sub-100-nm-channel MOSFETs in silicon. IEEE Electron Dev. Lett. 6(12), 665–667 (1985)CrossRefGoogle Scholar
  83. 83.
    R. Ohba, T. Mizuno, Nonstationary electron/hole transport in sub-0.1 μm MOS devices: Correlation with mobility and low-power CMOS application. IEEE Electron Dev. 48(2), 338–343 (2001)CrossRefGoogle Scholar
  84. 84.
    A. Ochoa, F.W. Sexton, T.F. Wrobel, G.L. Hash, Snap-back: A stable regenerative breakdown mode of MOS devices. IEEE Trans. Nucl. Sci. NS-10(6), 4127–4130 (1983)CrossRefGoogle Scholar
  85. 85.
    A.Z.H. Wang, C.-H. Tsay, An on-chip ESD protection circuit with low trigger voltage in BiCMOS technology. IEEE J. Solid State Circuits 36(1), 40–45 (2001)CrossRefGoogle Scholar
  86. 86.
    M. Nishida, H. Onodera, An anomalous increase in threshold voltages with shortening the channel lengths for deeply boron-implanted n-channel MOSFETs. IEEE Trans. Electron Dev. 28(9), 1101–1103 (1981)CrossRefGoogle Scholar
  87. 87.
    M. Orlowski, C. Mazuré, F. Lau, Submicron short channel effects due to gate reoxidation induced lateral interstitial diffusion. IEEE IEDM Tech. Digest, 632–635 (1987)Google Scholar
  88. 88.
    C.-Y. Hu, J.M. Sung, Reverse short-channel effects on threshold voltage in submicron silicide devices. IEEE Electron Dev. Lett. 10(10), 446–448 (1989)CrossRefGoogle Scholar
  89. 89.
    H. Brut, A. Juge, G. Ghbaudo, Physical model of threshold voltage in silicon MOS transistors including reverse short channel effects. Electron. Lett. 31(5), 411–412 (1995)CrossRefGoogle Scholar
  90. 90.
    K. Nishi, H. Matsuhashi, T. Ochini, K. Kasai, T. Nishikawa, Evidence of channel profile modification due to implantation damage studied by new method, and its implication to reverse short channel effect of nMOSFETs. IEEE IEDM Tech. Digest, 993–995 (1995)Google Scholar
  91. 91.
    H. Jacobs, A.V. Schwerin, D. Scharfetter, F. Lau, MOSFET reverse short channel effect due to silicon interstitial capture in gate oxide. IEEE IEDM Tech. Digest, 307–310 (1993)Google Scholar
  92. 92.
    K.O. Jeppson, Influence of the channel width on the threshold voltage modulation in M.O.S.F.E.T.S. Electron. Lett. 11(14), 297–299 (1975)CrossRefGoogle Scholar
  93. 93.
    L.A. Akers, The inverse-narrow-width effect. IEEE Electron Dev. Lett. 7(7), 419–421 (1986)CrossRefGoogle Scholar
  94. 94.
    A. Chatterjee, D. Rogers, J. McKee, I. Ali, S. Nag, I.C. Chen, A shallow trench isolation using LOCOS edge for preventing corner effects for 0.25/0.18 μm CMOS technologies and beyond. IEEE IEDM Tech. Digest, 829–832 (1996)Google Scholar
  95. 95.
    S. Matsuda, T. Sato, H. Yoshimura, Y. Takegawa, A. Sudo, I. Mizushima, Y. Tsunashima, Y. Toyoshima, Novel corner rounding process for shallow trench isolation utilizing MSTS (Micro-Structure Transformation of Silicon). IEEE IEDM Tech. Digest, 137–140 (1998)Google Scholar
  96. 96.
    C.H. Li, K.C. Tu, H.C. Chu, I.H. Chang, W.R. Liaw, H.F. Lee, W.Y. Lien, M.H. Tsai, W.J. Liang, W.G. Yeh, H.M. Chou, C.Y. Chen, M.H. Chi, A robust trench isolation (STI) with SiN pull-back process for advanced DRAM technology. IEEE/SMI Adv. Semicon. Manuf. Conf, 21–27 (2002)Google Scholar
  97. 97.
    B. Razavi, R.H. Yan, K.F. Lee, Impact of distributed gate resistance on the performance of MOS devices. IEEE Trans. Circuit Syst 41, 750–754 (1994)CrossRefGoogle Scholar
  98. 98.
    M.I. Elmasry, Capacitance calculation in MOSFET VLSI. IEEE Electron Dev. Lett. 3(1), 6–7 (1982)CrossRefGoogle Scholar
  99. 99.
    R. Shrivatsava, K. Fitzpatrick, A simple model for the overlap capacitance of a VLSI MOS device. IEEE Trans. Electron Dev. 29(12), 1870–1875 (1982)CrossRefGoogle Scholar
  100. 100.
    J. Mueller, E.D. Thoma, C. Bermicot, A. Juge, Modeling of MOSFET parasitic capacitances and their impact on circuit performance. Solid State Electron. 51(11/12), 1485–1493 (2007)CrossRefGoogle Scholar
  101. 101.
    A. Bansal, B.C. Paul, K. Roy, Modeling and optimization of fringe capacitance of nanoscale DGMOS devices. IEEE Trans. Electron Dev. 52(2), 256–262 (2005)CrossRefGoogle Scholar
  102. 102.
    J.-R. Kahng, J.-W. Moon, J.-H. Kim, C-V extraction method for gate fringe capacitance and gate to source-drain overlap length of LDD MOSFET. IEEE ICMTS, 59–63 (2001)Google Scholar
  103. 103.
    T. Sato, T. Takeishi, H. Hara, Mobility anisotropy of electrons in inversion layer on oxidized silicon surfaces. Phys. Rev. B 4(6), 195–1960 (1971)CrossRefGoogle Scholar
  104. 104.
    C.T. Sah, J.R. Edwards, T.H. Ning, Observation of mobility anisotropy of electrons on (110) silicon surfaces at low temperatures. Phys. Staus Solidi (a) 10(1), 153–160 (1972)CrossRefGoogle Scholar
  105. 105.
    S.I. Tagaki, A. Toriumi, M. Iwase, H. Tango, On the universality of inversion layer mobility in Si. MOSFETs: Part II – effect of surface orientation. IEEE Trans. Electron Dev 41(12), 2362–2368 (1994)Google Scholar
  106. 106.
    M. Yang, V.W.C. Chan, K.K. Chan, L. Shi, D.M. Fried, J.H. Sathis, A.I. Chou, E.P. Gusev, J.A. Ott, L.E. Burns, M.V. Fischetti, M. Ieong, Hybrid-orientation technology (HOT): Opportuniti4es and challenges. IEEE Trans. Electron Dev 53(5), 965–978 (2006)CrossRefGoogle Scholar
  107. 107.
    M. Yang, E.P. Gusev, M. Ieong, O. Gluschnkov, D.C. Boyd, K.K. Chan, P.M. Kozlowski, C.P. D’Emic, R.M. Sicina, P.C. Jamison, A.I. Chou, Performance dependence of CMOS silicon substrate orientation for ultrathin oxynitride and HfO2 gate dielectrics. IEEE Electron Dev. Lett 24(5), 339–341 (2003)CrossRefGoogle Scholar
  108. 108.
    H.S. Momose, T. Ohguro, K. Kojima, S.-i. Nakamura, Y. Toyoshima, 1.5-nm gate oxide CMOS on (100) surface-oriented Si substrate. IEEE Trans. Electron Dev. 50(4), 1001–1007 (2003)CrossRefGoogle Scholar
  109. 109.
    M. Kinugawa, M. Kakumu, T. Usami, J. Matsugana, Effects of silicon surface orientation on submicron CMOS devices. IEEE IEDM Tech. Digest, 581–584 (1985)Google Scholar
  110. 110.
    T. Mizuno, N. Sugiyama, T. Tezuka, Y. Moriyama, S. Nakaharai, T. Maeda, S. Takagi, Physical mechanism for high hole mobility in (110)-surface strained- and unstrained-MOSFETs. IEEE IEDM Tech. Digest, 809–812 (2003)Google Scholar
  111. 111.
    K. Onishi, C.S. Kang, R. Choi, H.-J. Cho, Y.H. Kim, S. Krishnan, M.S. Akbar, J.C. Lee, Performance of polysilicon gate HfO2 MOSFETs on (100) and (111) silicon substrate. IEEE Electron Dev. Lett. 24(4), 254–256 (2003)CrossRefGoogle Scholar
  112. 112.
    L. Chang, M. Ieong, M. Yang, CMOS circuit performance enhancement by surface orientation optimization. IEEE Trans. Electron Dev. 51(10), 1621–1627 (2004)CrossRefGoogle Scholar
  113. 113.
    H. Nakamura, T. Ezaki, T. Ewamoto, M. Togo, T. Ikezawa, N. Ikarashi, M. Hane, T. Yamamoto, Effects of selecting channel direction in improving performance of sub-100 nm MOSFETs fabricated on (110) surface Si substrate. Jpn. J. Appl. Phys. 43(4B), 1723–1728 (2004)CrossRefGoogle Scholar
  114. 114.
    M. Aoki, K. Yano, T. Masuhara, K. Shimohigashi, Fully symmetric cooled CMOS on (110) plane. IEEE Trans. Electron Dev. 36(8), 1429–1433 (1989)CrossRefGoogle Scholar
  115. 115.
    R.W. Keyes, High-mobility FET in strained silicon. IEEE Trans. Electron Dev ED-33(6), 853 (1986)Google Scholar
  116. 116.
    C.S. Smith, Piezoresistance effect in germanium and silicon. Phys. Rev. B 94(1), 42–46 (1954)CrossRefGoogle Scholar
  117. 117.
    S.E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buchler, R. Chau, S. Cea, T. Ghani, T. Hoffman, C.-H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma, B. Mcintyire, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, Y. El-Masry, A 90-nm logic technology featuring strained-silicon. IEEE Trans. Electron Dev. 51(11), 2004 (1790-1796)Google Scholar
  118. 118.
    K.-J. Chui, K.-W. Ang, N. Balasubramanian, M.-F. Lee, G.S. Samudra, Y.-C. Yeo, n-MOSFET with silicon-carbon source/drain for enhancement of carrier transport. IEEE Trans. Electron Dev. 54(2), 249–256 (2007)CrossRefGoogle Scholar
  119. 119.
    K. Rim, J.L. Hoyt, J.F. Gibbons, Fabrication and analysis of deep submicron strained-Si N-MOSFETs. IEEE Trans. Electron Dev. 47(7), 1406–1415 (2000)CrossRefGoogle Scholar
  120. 120.
    H.M. Nayfey, C.W. Leitz, A.J. Pitera, E.A. Fitzgerald, J.L. Hoyt, D.A. Antoniadis, Influence of high channel doping on the inversion layer electron mobility in strained silicon n-MOSFETs. IEEE Electron Dev. Lett. 24(4), 248–250 (2003)CrossRefGoogle Scholar
  121. 121.
    C.-H. Ge, C.-C. Lin, C.-H. Ko, C.-C. Huang, B.-W. Chan, B.-C. Perng, V.-C. Sheu, P.-Y. Tsai, L.-G. Yao, C.-L. Wu, T.-L. Lee, C.-J. Chen, C.-T. Wang, S.-C. Lin, Y.-C. Yeo, C. Hu, Process-strained Si (PSS) CMOS technology featuring 3D strain engineering. IEEE IEDM Tech. Digest, 73–76 (2003)Google Scholar
  122. 122.
    E. Simoen, P. Verheyen, A. Shickova, R. Loo, C. Claeys, On the low-frequency noise of pMOSFETs with embedded SiGe source/drain and fully silicided metal gate. IEEE Electron Dev. Lett. 28(11), 987–989 (2007)CrossRefGoogle Scholar
  123. 123.
    A.E. Thompson, R.S. Chau, T. Ghani, K. Mistry, S. Tyagi, M.T. Bohr, In search “forever”, continued transistor scaling one new material at a time. IEEE Trans. Semicond. Manuf 18(1), 26–36 (2005)CrossRefGoogle Scholar
  124. 124.
    T. Marimoto, H. Sasaki Mimose, Y. Ozawa, K. Yamabe, H. Iwai, Effect of boron penetration and resultant limitaions in ultrathin pure oxide and nitrided-oxide gate-films. IEEE IEDM Tech. Digest, 429–432 (1990)Google Scholar
  125. 125.
    J.S. Cable, E.A. Mann, C.S. Woo, Impurity barrier properties of reoxidized nitrided oxide films for use with P+-doped polysilicon gates. Electron Dev. Lett 12(3), 128–130 (1991)CrossRefGoogle Scholar
  126. 126.
    B. Piot, K. Barla, A. Strakoni, Boron diffusion effects from P+-polysilicon gate in thin thermal oxide and plasma nitrided oxide. Microelectron. Eng. 15, 475–478m (1991)CrossRefGoogle Scholar
  127. 127.
    B. Tavel, M. Bidaud, N. Emonet, D. Barge, H. Brut, D. Roy, J.C. Vildeuil, R. Difrenza, K. Rochereau, M. Denais, V. Huard, P. Llinares, S. Bruyère, C. Parthasarthy, N. Revil, R. Pantel, F. Guyader, L. Vishnunotla, K. Barla, F. Arnaud, P. Stolk, M. Woo, Thin oxyntride solution for digital and mixed-signale 65nm CMOS platform. IEEE IEDM Tech. Digets, 643–646 (2003)Google Scholar
  128. 128.
    M. Marin, J.C. Vildeuil, B. Tavel, B. Duriez, F. Arnaud, P. Stolk, M. Woo, Can 1/f noise in MOFETs ne reduced by gate oxide and channel optimization?, 18th International Conference on Noise and Fluctuations, 195–198 (2005)Google Scholar
  129. 129.
    B. El-Kareh, Silicon Devices and Process Integration (Springer, 2009)Google Scholar
  130. 130.
    Z.M. Rittersma, M. Vertregt, W. Deweerd, S. Van Elshocht, P. Srinivasan, E. Simoen, Characterization and mixed-signal properties of MOSFETs with high-k (SiON/HfSiON/TaN) gate stacks. IEEE Trans. Electron Dev. 53(5), 1216–1225 (2006)CrossRefGoogle Scholar
  131. 131.
    H.-M. Kwon, I.-S. Han, J.-D. Bok, S.-U. Park, Y.-J. Jung, G.-W. Lee, Y.-S. Chung, J.-H. Lee, C.Y. Kang, P. Kirsch, R. Jammy, H.-D. Lee, Characterization of random telegraph signal noise of high-performance p-MOSFETs with a high-k dielectric/metal gate. IEEE Electron Dev. Lett. 32(5), 686–688 (2011)CrossRefGoogle Scholar
  132. 132.
    C. Hobbs, T. Tseng, K. Reid, B. Taylor, L. Dip, L. Hebert, R. Garcia, R. Hegde, J. Grant, D. Gilmer, A. Franke, V. Dhandapani, M. Azrak, L. Prabhu, R. Rai, S. Bagchi, J. Conner, S. Backer, F. Dumbuya, B. Nguyen, P. Tobin, 80 nm poly-Si gate CMOS with HfO2 gate dielectric. IEEE IEDM Tech. Digest, 651–654 (2001)Google Scholar
  133. 133.
    X. Yu, M. Yu, C. Zhu, A comparative study of HfTaON/SiO2 and HfON/SiO2 gate stacks with TaN metal gate for advanced CMOS applications. IEEE Trans. Electron Dev. 54(2), 284–290 (2007)CrossRefGoogle Scholar
  134. 134.
    A.L.P. Rotondaro, M.R. Visokay, J.J. Chambers, A. Shanware, R. Khamankar, H. Bu, R.T. Laaksonen, L. Tsung, M. Douglas, R. Kuan, M.J. Bevan, T. Grider, J. McPherson, L. Colombo, Advanced CMOS Transistors with a Novel HfSiON Gate Dielectric. VLSI Tech. Digest, 148–149 (2002)Google Scholar
  135. 135.
    T. Yamaguchi, R. Iijima, T. Ino, A. Nishiyama, H. Satake, N. Fukushima, Additional scattering effects for mobility degradation in Hf-silicate gate MISFETs. IEEE IEDM Tech. Digest, 621–624 (2002)Google Scholar
  136. 136.
    Z. Ren, M.V. Fischetti, E.P. Geusev, E.A. Cartier, M. Chudzik, Inversion channel mobility in high-k high performance MOSFETs. IEDM Tech. Digest, 793–796 (2003)Google Scholar
  137. 137.
    A. Morioka, H. Watanabe, M. Miyamura, T. Tatsumi, M. Saitoh, T. Ogura, T. Iwamoto, T. Ikarashi, Y. Saito, Y. Okada, H. Watanabe, Y. Mochiduki, T. Mogami, High mobility MISFET with low trapped charge in HfSiO films. VLSI. Tech. Digest, 165–166 (2003)Google Scholar
  138. 138.
    M. Fulde, A. Mercha, C. Gustin, B. Parvais, V. Subramanian, K.V. Arnim, F. Bauer, K. Schruefer, D. Schmitt-Landsiedel, G. Knoblinger, Analog design challenges and trade-offs using emerging materials and devices. European Solid-State Dev. Res. Conf., ESSDERC, 123–126 (2007)Google Scholar
  139. 139.
    C.-H. Jan, M. Agostinelli, M. Buehler, Z.-P. Chen, S.-J. Choi, G. Curello, H. Deshpande, S. Gannavaram, W. Hafez, U. Jalan, M. Kang, P. Kolar, K. Komeyli, B. Landau, A. Lake, N. Lazo, S.-H. Lee, T. Leo, J. Lin, N. Lindert, S. Ma, L. McGill, C. Meining, A. Paliwal, J. Park, K. Phoa, I. Post, N. Pradhan, M. Prince, A. Rahman, J. Rizk, L. Rockford, G. Sacks, A. Schmitz, H. Tashiro, C. Tsai, P. Vandervoorn, J. Xu, L. Yang, J.-Y. Yeh, J. Yip, K. Zhang, Y. Zhang, P. Bai, A 32nm SoC platform technology with 2nd generation high-k/metal gate transistors optimized for ultra-low power, high performance, and high density product applications. IEEE IEDM Tech. Digest, 647–650 (2009)Google Scholar
  140. 140.
    H. Takato, K. Sunouchi, N. Okabe, A. Nitayama, K. Hieda, F. Horiguchi, F. Masuoka, High performance CMOS surrounding gate transistor (SGT) for ultra-high density LSIs. IEEE IEDM Tech. Digest, 88–91 (1988)Google Scholar
  141. 141.
    D. Hisamoto, T. Kaga, Y. Kawamoto, E. Takeda, A fully depleted lean-channel transistor (DELTA) - novel vertical ultra-thin SOI MOSFEF. IEEE IEDM Tech. Digest, 883–886 (1989)Google Scholar
  142. 142.
    J.M. Hergenrother, D. Monroe, F.P. Klemens, A. Kornblit, G.R. Weber, W.M. Mansfield, M.R. Baker, F.H. Baumann, K.J. Bolan, J.E. Bower, N.A. Ciampa, R.A. Cirelli, J.I. Colonell, D.J. Eaglesham, J. Frackoviak, H.J. Gossmann, M.L. Green, S.J. Hillenius, C.A. King, R.N. Kleiman, W.Y.-C. Lai, J.T.-C. Lee, R.C. Liu, H.L. Maynard, M.D. Morris, S.-H. Oh, C.-S. Pai, C.S. Rafferty, J.M. Rosamilia, T.W. Sorsch, H.-H. Vuong, The vertical replacement-gate (VRG) MOSFET: A 50-nm vertical MOSFET with lithography-independent gate length. IEEE IDEM Tech. Digest, 75–78 (1999)Google Scholar
  143. 143.
    X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J. King, J. Bokor, C. Hu, Sub 50-nm FinFET: PMOS. IEEE IEDM Tech. Digest, 67–70 (1999)Google Scholar
  144. 144.
    D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, C. Hu, FinFET—A self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Dev. 47(12), 2320–2325 (2000)CrossRefGoogle Scholar
  145. 145.
    A. Thean, P. Wambacq, J.W. Lee, M.J. Cho, A. Veloso, Y. Sasaki, T. Chiarella, K. Miyaguchi, B. Parvais, M. Garcia Bardon, P. Schuddinck, M.S. Kim, N. Horiguchi, M. Dehan, A. Mercha, G. Van der Plas, N. Collaert, D. Verkest, Impact of multi-gate device architectures on digital and analog circuits and its implications on System-On-Chip technologies. IEEE IEDM Tech. Digest, 17.3.1–17.3.3 (2013)Google Scholar
  146. 146.
    S.-Y. Wu, C.Y. Lin, M.C. Chiang, J.J. Liaw, J.Y. Cheng, S.H. Yang, M. Liang, T. Miyashita, C.H. Tsai, B.C. Hsu, H.Y. Chen, T. Yamamoto, S.Y. Chang, V.S. Chang, C.H. Chang, J.H. Chen, H.F. Chen, K.C. Ting, Y.K. Wu, K.H. Pan, R.F. Tsui, C.H. Yao, P.R. Chang, H.M. Lien, T.L. Lee, H.M. Lee, W. Chang, T. Chang, R. Chen, M. Yeh, C.C. Chen, Y.H. Chiu, Y.H. Chen, H.C. Huang, Y.C. Lu, C.W. Chang, M.H. Tsai, C.C. Liu, K.S. Chen, C.C. Kuo, H.T. Lin, S.M. Jang, Y. Ku, A 16nm FinFET CMOS Technology for mobile SoC and computing applications. IEEE IEDM Tech. Digest, 224–227 (2013)Google Scholar
  147. 147.
    Y.-K. Choi, K. Asano, N. Lindert, V. Subramanian, T.-J. King, J. Bokor, C. Hu, Ultrathin-body SOI MOSFET for deep-sub-tenth micron era. IEEE Trans. Electron Dev 21(5), 254–255Google Scholar
  148. 148.
    S.D.S. Malhi, H.W. Lam, R.F. Pinizzotto, A.H. Hamdi, F.D. McDaniel, Novel SOI CMOS design using ultra-thin near-intrinsic substrate. IEDM Tech. Digest, 107–110 (1982)Google Scholar
  149. 149.
    K. Throngnumchai, K. Asada, T. Sugano, Modeling of 0.1-μm MOSFET on SOI structure using Monte Carlo simulation technique. IEEE Trans. Electron Dev ED-33(7), 1005–1011 (1986)CrossRefGoogle Scholar
  150. 150.
    T.-J. King, J.P. McVittie, C. Saraswat, Electrical properties of heavily doped polycrystalline silicon-germanium films. IEEE Trans. Electron Dev 41(2), 228–231CrossRefGoogle Scholar
  151. 151.
    J.-P. Coulinge, Fully-depleted SOI CMOS for analog applications. IEEE Trans. Electron Dev 45(5), 1010–1016 (1998)CrossRefGoogle Scholar
  152. 152.
    E. Suzuchi, K. Ishii, S. Kanemaru, T. Toshisumi, T. Sekigawa, K. Nagai, H. Hiroshima, Highly suppressed short-channel effects in ultrathin SOI n-MOSFETs. IEEE Trans. Electron Dev. 47(2), 354–359 (2000)CrossRefGoogle Scholar
  153. 153.
    E. Simoen, A. Mercha, C. Claeys, N. Lukyanchilova, N. Garbar, Critical discussion of the front-back gate coupling effect on the low-frequency noise in fully-depleted SOI MOSFETs. IEEE Trans. Electron Dev 51(6) (2004)CrossRefGoogle Scholar
  154. 154.
    N.H.E. West, K. Eshraghian, Principles of CMOS VLSI Design (Addison-Wesley Publishing Company, 1993), p. 81Google Scholar
  155. 155.
    R.J. Baker, CMOS Circuit Design, Layout, and Simulation (IEEE Press/Wiley, 2010), p. 636Google Scholar
  156. 156.
    E.K.F. Lee, A. Lam, T. Li, A 0.65 V rail-to-rail constant gm opamp for biomedical applications, IEEE Intn’l Symposium On Circuits and Systems (ISCAS), 2721–2724 (2008)Google Scholar
  157. 157.
    M.-D. Ker, K.-C. Hsu, Native-NMOS-triggered SCR with faster turn-on speed for effective ESD protection in a 0.13-μm CMOS process. IEEE Trans. Device Mater. Reliab 5(3), 543–554 (2005)CrossRefGoogle Scholar
  158. 158.
    H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi, K. Sakui, A CMOS bandgap reference circuit with sub-1-V operation. IEEE J. Solid State Circuits 34(5), 670674 (1999)CrossRefGoogle Scholar
  159. 159.
    K.C. Gunsager, C.K. Kim, J.D. Phillips, Performance and operation of buried charge coupled devices. IEEE IEDM Tech. Digest, 21–23 (1973)Google Scholar
  160. 160.
    Y. Chen, X. Wang, A.J. Mierop, A.J.P. Theuwissen, A CMOS image sensor with in-pixel buried-channel source follower and optimized row selector. IEEE Trans. Electron Dev. 56(11), 2390–2396 (2009)CrossRefGoogle Scholar
  161. 161.
    R. Griffith, R. Vyne, R. Dorson, T. Petty, A 1 V BiCMOS rail-to-tail amplifier with n-channel depletion-mode input-stage. IEEE ISSCC, 352–353,384 (1997)Google Scholar
  162. 162.
    K. Koh, B.J. Hwang, K.H. Kwak, Y.S. Son, J.Y. Lee, J.H. Jang, S.H. Seo, H.S. Kim, D. Park, K.N. Kim, Highly manufacturable 100 nm 6T low power SRAM with single poly-Si gate technology. IEEE VLSI Tech. Syst. Appl, 94–97 (2003)Google Scholar
  163. 163.
    T. Stockstad, H. Yoshizawa, A 0.9-V 0.5-μA rail-to-rail CMOS operational amplifier. IEEE JSSC 37(3) (2002)Google Scholar
  164. 164.
    R. Griffith, R.L. Vyne, R.N. Dotson, T. Petty, A 1-V BiCMOS rail-to-rail amplifier with n-channel depletion mode input stage. IEEE JSSC 32(12) (1997)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Badih El-Kareh
    • 1
  • Lou N. Hutter
    • 2
  1. 1.PIYECedar ParkUSA
  2. 2.Lou Hutter ConsultingDallasUSA

Personalised recommendations