Advertisement

Mismatch and Noise

  • Badih El-Kareh
  • Lou N. Hutter
Chapter

Abstract

Component mismatch limits the precision of analog circuits, such as converters and current mirrors, and noise ultimately sets a lower limit on signals that can be detected and processed. Both mismatch and noise can have a large impact on the precision of analog and mixed-signal circuits. The first part of this chapter discusses random and systematic mismatch in passive and active components, mismatch characterization, and process and design methods to reduce mismatch. The second part describes the different noise mechanisms, focusing on low-frequency noise and methods to reduce it.

Supplementary material

References

  1. 1.
    J.-B. Shyu, G.C. Temes, F. Krummenacher, Random error effects in matched MOS capacitors and current sources. IEEE J. Solid State Circuits SC-17, 1070-1076, 1982, and SC-19 (6), 948-955 (1984)Google Scholar
  2. 2.
    K.R. Lakshmikumar, R.A. Hadaway, M.A. Copeland, Characterization and modeling of mismatch in MOS transistors for precision analog design. IEEE J. Solid State Circuits SC-21(6), 1057–1066 (1986)CrossRefGoogle Scholar
  3. 3.
    A. Hastings, The Art of Analog Layout, 254–300 (Prentice Hall, New Jersey, USA, 2001)Google Scholar
  4. 4.
    K. Rim, J.L. Hoyt, J.F. Gibbons, Fabrication and analysis of deep submicron strained-Si N-MOSFETs. IEEE Trans. Electron Dev. 47(7), 1406–1415 (2000)CrossRefGoogle Scholar
  5. 5.
    S.E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buchler, R. Chau, S. Cea, T. Ghani, T. Hoffman, C.-H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma, B. Mcintyire, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, Y. El-Masry, A 90-nm logic technology featuring strained-silicon. IEEE Trans. Electron Dev. 51(11), 1790–1796 (2004)CrossRefGoogle Scholar
  6. 6.
    G. Scott, J. Lutze, M. Rubin, F. Nouri, M. Manley, NMOS drive current reduction by transistor layout and trench induced stress. IEEE IEDM Tech. Digest, 827–830 (1999)Google Scholar
  7. 7.
    P.G. Drennan, M.L. Kniffin, D.R. Locascio, Implications of proximity effects for analog designs. Custom Integrated Circuits Conference (CICC), 169–176 (2006)Google Scholar
  8. 8.
    K.W. Su, Y.M. Sheu, C.K. Lin, S.J. Yang, W.J. Liang, X. Xi, C.S. Chiang, J.K. Her, Y.T. Chia, C.H. Diaz, C. Hu, A scaleable model for STI mechanical stress effect on layout dependence of MOS electrical characteristics. Custom Integrated Circuits Conference (CICC), 245–248 (2003)Google Scholar
  9. 9.
    R.A. Bianchi, G. Bouche, O. Roux-dit-Buisson, Accurate modeling of trench isolation induced mechanical stress effects on MOSFET electrical parameters. IEEE IEDM Tech. Digest, 117–120 (2002)Google Scholar
  10. 10.
    N. Wils, H.P. Tuinhout, M. Meijer, Characterization of STI edge effects on CMOS variability. IEEE Trans. Semicond. Manuf 22(1), 59–65 (2009)CrossRefGoogle Scholar
  11. 11.
    T.B. Hook, J. Brown, P. Cottrell, E. Adler, D. Hoyniak, J. Johnson, R. Mann, Lateral ion implant straggle and mask proximity effect. IEEE Trans Electron Dev 50(9), 1946–1951 (2003)CrossRefGoogle Scholar
  12. 12.
    T. Kanamoto, Y. Ogasahara, K. Natsume, K. Yamaguchi, H. Amishiro, T. Watanabe, M. Hashimoto, Impact of well edge proximity effect on timing. Dev. Res. Conf, 115–118 (2007)Google Scholar
  13. 13.
    Y.M. Sheu, K.W. Su, S.J. Yang, H.T. Chen, C.C. Wang, M.J. Chen, S. Liu, Modeling well edge proximity effect on highly-scaled MOSFETs. IEEE Custom Integrated Circuits Conf, 831–834 (2005)Google Scholar
  14. 14.
    J. Watts, K.W. Su, M. Basel, Netlisting and modeling well-proximity effects. IEEE Trans. Electron Dev. 53(9), 2179–2196 (2006)CrossRefGoogle Scholar
  15. 15.
    A.R. Brown, G. Roy, A. Asenov, Poly-Si-gate-related variability in decananometer MOSFETs with conventional architecture. IEEE Trans. Electron Dev. 54(11), 3036–3063 (2007)CrossRefGoogle Scholar
  16. 16.
    H. Tuinhout, M. Pelgrom, R. Penning de Vries, M. Vertregt, Effects of metal coverage on MOSFET matching. IEEE IEDM Tech. Digest, 735–738 (1996)Google Scholar
  17. 17.
    X. Wu, J. Trogolo, F. Inoue, Z. Chen, P. Jones-Williams, I. Khan, P. Madhani, Impact of sinter process and metal coverage on transistor mismatching and parameter variations in analog CMOS technology. IEEE ICMTS Tech Digest, 69–73 (2007)Google Scholar
  18. 18.
    M.J.M. Pelgrom, A.C.J. Duinmaijer, A.P.G. Welbers, Matching properties of MOS transistors. IEEE J. Solid State Circuits 24(5), 1433–1440 (1989)CrossRefGoogle Scholar
  19. 19.
    P.R. Kinget, Device mismatch and tradeoffs in the design of analog circuits. IEEE J. Solid State Circuits 40(6), 1212–1224 (2005)CrossRefGoogle Scholar
  20. 20.
    M.J.M. Pelgrom, H.P. Tuinhout, M. Vertregt, Transistor matching in analog CMOS applications. IEEE IEDM Tech. Digest, 915–918 (1998)Google Scholar
  21. 21.
    M. Steyaert, J. Bastos, R. Roovers, P. Kinget, W. Sansen, B. Graindourze, A. Pergoot, E.R. Janssens, Threshold voltage mismatch in shortchannel MOS transistors. Electron. Lett 30(18), 1546–1547 (1994)CrossRefGoogle Scholar
  22. 22.
    S.J. Lovett, M. Welten, A. Mathewson, B. Mason, Optimizing MOS transistor mismatch. IEEE J. Solid State Circuits 33(1), 147–150 (1998)CrossRefGoogle Scholar
  23. 23.
    G. Baccarani, M. Severi, G. Soncini, A new method for the determination of the interface-state density in the presence of statistical fluctuation of the surface potential. Appl. Phys. Lett 23(5), 265–267 (1973)CrossRefGoogle Scholar
  24. 24.
    R. Castagne, A. Vapaille, Apparent interface state density introduced by the spatial fluctuations of surface potential in an M.O.S. Structure. Electron. Lett. 6(22), 691–693 (1970)CrossRefGoogle Scholar
  25. 25.
    R.W. Keyes, Physical limits in digital electronics. Proc. IEEE, 740–768 (1975)CrossRefGoogle Scholar
  26. 26.
    B. Hoeneisen, C.A. Mead, Fundamental limitations in microelectronics – I. MOS technology. Solids-State Electron 15(7), 819–829 (1972)CrossRefGoogle Scholar
  27. 27.
    K. Takeuchi, T. Tatsumi, A. Furukawa, Channel engineering for the reduction of random-dopant-placement-induced threshold voltage fluctuation. IEEE IEDM Tech. Digest, 841–844 (1997)Google Scholar
  28. 28.
    P.A. Stolk, D.B.M. Klaassen, The effect of statistical dopant fluctuations on MOS device performance. IEEE IEDM Tech. Digest, 627–630 (1996)Google Scholar
  29. 29.
    T. Mizuno, J.-I. Okamura, A. Toriumi, Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFETs. IEEE Trans. Electron. Dev 41(11), 2216–2221 (1994)CrossRefGoogle Scholar
  30. 30.
    A. Asenov, S. Saini, Polysilicon gate enhancement of the random dopant induced threshold voltage fluctuations in sub-100 nm MOSFETs with ultrathin gate oxide. IEEE Trans. Electron Dev 47(4), 805–812 (2000)CrossRefGoogle Scholar
  31. 31.
    J.A. Croon, H.P. Tuinhout, R. Difrenza, J. Knol, A.J. Moonen, S. Decoutere, H.E. Maes, W. Sansen, A comparison of extraction techniques for threshold voltage mismatch. IEEE ICMTS Tech. Digest, 225–240 (2002)Google Scholar
  32. 32.
    H.P. Tuinhout, A.H. Montree, P.A. Stolk, Effects of gate depletion and boron penetration on matching of deep submicron CMOS transistors. IEEE IEDM Tech. Digest, 631–634 (1997)Google Scholar
  33. 33.
    R. Difrenza, J.C. Vildeuil, P. Llinares, G. Ghibaudo, Impact of grain number fluctuations in the MOS transistor gate on matching performance. IEEE ICMTS Tech. Digest, 244–249 (2003)Google Scholar
  34. 34.
    H. Ryssel, H. Iberl, M. Bleier, G. Prine, K. Haberger, H. Kranz, Arsenic-implanted Polysilicon layers. Appl. Phys. 24(3), 197–200 (1981)CrossRefGoogle Scholar
  35. 35.
    B. Swaminathan, K.C. Saraswat, R.W. Dutton, Diffusion of arsenic in polycrystalline silicon. Appl. Phys. Lett. 40(9), 795–798 (1982)CrossRefGoogle Scholar
  36. 36.
    M. Arienzo, Y. Komem, A.E. Michel, Diffusion of arsenic in bilayer polycrystalline silicon films. J. Appl. Phys. 55(2), 365–369 (1984)CrossRefGoogle Scholar
  37. 37.
    H. Schaber, R.V. Criegern, I. Weitzel, Analysis of polycrystalline diffusion source by secondary ion mass spectroscopy. J. Appl. Phys. 58(11), 4036–4042 (1985)CrossRefGoogle Scholar
  38. 38.
    J.M.C. Stork, M. Arienzo, C.Y. Wong, Correlation between the diffusive and electrical barrier properties of the interface in polysilicon contacted n+−p junctions. IEEE Trans. Electron Dev 32(9), 1766–1770 (1985)CrossRefGoogle Scholar
  39. 39.
    J.L. Hoyt, E.F. Crabbé, R.F.W. Pease, J.F. Gibbons, A.F. Marshall, Lateral uniformity of n +/p junctions formed by arsenic diffusion from epitaxially aligned polycrystalline silicon on silicon. J. Electrochem. Soc. 135(7), 1773–1779 (1988)CrossRefGoogle Scholar
  40. 40.
    S. Nédèle, D. Mathiot, M. Gaunneau, Diffusion of boron on polycrystalline silicon. ESSDERC Tech. Digest, 153–156 (1996)Google Scholar
  41. 41.
    A. Wang, K.C. Saraswat, A strategy for modeling of variations due to grain size in polycrystalline thin-film transistors. IEEE Trans. Electron Dev 47(5), 1035–1043 (2000)CrossRefGoogle Scholar
  42. 42.
    J.T. Horstmann, U. Hilleringmann, K.F. Goser, Matching analysis of deposition defined 50-nm MOSFETs. IEEE Trans. Electron Dev 45(1), 299–306 (1998)CrossRefGoogle Scholar
  43. 43.
    T. Tanaka, T. Ususki, T. Futatsugi, Y. Momiyama, T. Sugii, Vth fluctuation induced by statistical variation of pocket dopant profile. IEEE IEDM Tech. Digest, 271–274 (2000)Google Scholar
  44. 44.
    U. Schaper, J. Enfield, Matching model for planar bulk transistors with halo implantation. IEEE Electron Dev. Lett 32(7), 589–591 (2011)CrossRefGoogle Scholar
  45. 45.
    J.A. Croon, E. Augendre, S. Decoutere, W. Sanden, H.E. Maes, Influence of doping profile and halo implantation on the threshold voltage mismatch of a 0.13 μm CMOS technology. ESSDERC, 579–582 (2002)Google Scholar
  46. 46.
    K. Rochereau, R. Difrenza, J. McGinley, O. Noblanc, C. Julien, S. Parihar, P. Llinares, Impact of pocket implant on MOSFET mismatch for advanced CMOS technology. IEEE ICMTS, 123–126 (2004)Google Scholar
  47. 47.
    C.M. Mezzomo, A. Bajolet, A. Cathignol, G. Ghibaudo, Drain current variability in 45 nm heavily pocket-implanted bulk MOSFET. ESSDERC, 122–125 (2010)Google Scholar
  48. 48.
    S. Winkelmeier, M. Sarstedt, M. Ereken, M. Goethals, K. Ronse, Metrology method for the correlation of line edge roughness for different resists before and after etch. Microelectron. Eng 57-58, 665–672 (2001)CrossRefGoogle Scholar
  49. 49.
    S. Xiong, J. Bokor, A simulation study of gate line edge roughness effects on doping profiles of short-channel MOSFET devices. IEEE Trans. Electron Dev 51(2), 228–232 (2004)CrossRefGoogle Scholar
  50. 50.
    L.H.A. Leunissen, M. Ercken, G.P. Patsis, Determining the impact of statistical fluctuations on resist line edge roughness. Microelectron. Eng 78–79, 2–10 (2005)CrossRefGoogle Scholar
  51. 51.
    C.H. Diaz, H.-J. Tao, Y.-C. Ku, A. Yen, K. Young, An experimentally validated analytical model for gate line-edge roughness (LER) effects on technology scaling. IEEE Electron Dev. Lett 22(6), 287–289 (2001)CrossRefGoogle Scholar
  52. 52.
    T. Linton, M. Chandhok, B.J. Rice, C. Schrom, Determination of the line edge roughness specification for 34 nm devices. IEEE IEDM Tech. Digest, 303–306 (2002)Google Scholar
  53. 53.
    J.A. Croon, G. Storms, S. Winkelmeier, I. Pollentier, M. Ercken, S. Decoutere, W. Sansen, H.E. Maes, Line edge roughness: Characterization, modeling and impact on device behavior. IEEE IEDM Tech. Digest, 307–310 (2002)Google Scholar
  54. 54.
    G. Declerck, A look into the future of nanoelectronics. Symp. VLSI Tech. Digest, 6–10 (2005)Google Scholar
  55. 55.
    M. Steyart, J. Bastos, R. Roovers, P. Kinget, W. Samsen, B. Graindourze, A. Pergoot, E.R. Janssens, Threshold voltage mismatch in short-channel MOS transistors. Electron. Lett 30(18), 146–148 (1994)Google Scholar
  56. 56.
    R.W. Keyes, High-mobility FET in strained silicon. IEEE Trans. Electron Dev ED-33(6), –853 (1986)CrossRefGoogle Scholar
  57. 57.
    P.G. Drennan, C.C. McAndrew, J. Bates, A comprehensive vertical BJT mismatch model. IEEE BCTM Tech. Digest, 83–86 (1998)Google Scholar
  58. 58.
    H.P. Tuinhout, Improving BiCMOS technologies using BJT parametric mismatch characterization. IEEE BCTM Tech. Digest, 163–170 (2003)Google Scholar
  59. 59.
    P.G. Drennan, C.C. McAndrew, J. Bates, D. Schroder, Rapid evaluation of the root causes of BJT mismatch. IEEE BCTM Tech. Digest, 122–127 (2000)Google Scholar
  60. 60.
    C. McAndrew, J. Bates, T.T. Ida, P. Drennan, Efficient statistical BJT modeling, why β is more than IC/IB. IEEE BCTM Tech. Digest, 28–31 (1997)Google Scholar
  61. 61.
    S. Bordez, S. Danaie, R. Difrenza, J.-C. Vildeuil, G. Morin, Study of bipolar matching at high current level with various test configurations leading to a new model approach. IEEE BCTM Tech. Digest, 62–65 (2005)Google Scholar
  62. 62.
    P.G. Drennan, Diffused resistor mismatch modeling and characterization. IEEE BCTM Tech. Digest, 27–30 (1999)Google Scholar
  63. 63.
    F. Larsen, M. Ismail, C. Abel, A versatile structure for on-chip extraction of resistance matching properties. IEEE Trans. Semicond. Manufact 9(2), 281–285 (1996)CrossRefGoogle Scholar
  64. 64.
    R. Thewes, R. Brederlow, C. Dahl, U. Kollmer, C.G. Linnenbank, B. Holzapfl, J. Becker, J. Kissing, S. Kessel, W. Weber, Explanation and quantitative model for the matching behavior of poly-silicon resistors. IEEE IEDM Tech Digest., 771–774 (1998)Google Scholar
  65. 65.
    H. Thibieroz, P. Shaner, Z.C. Butler, Mismatch and flicker noise characterization of tantalum nitride thin film resistors for wireless applications. IEEE ICMTS Tech Digest, 207–212 (2001)Google Scholar
  66. 66.
    U. Grünebaum, J. Oehm, K. Schumacher, Mismatch modeling and simulation – A comprehensive approach. Analog Integr. Circ. Sig. Process, Kluwer Academic Publishers 29, 165–171 (2001)CrossRefGoogle Scholar
  67. 67.
    H. Iwai, S. Kohyama, On-chip capacitance measurement circuits in VLSI structures. IEEE Trans. Electron Dev. ED-29(10), 1622–1626 (1982)CrossRefGoogle Scholar
  68. 68.
    B. Eitan, Channel-length measurement technique based on a floating-gate device. IEEE Electron Dev. Lett 9(7), 340–342 (1988)CrossRefGoogle Scholar
  69. 69.
    C. Kortekaas, On-chip quasi-static floating-gate capacitance measurement method. IEEE ICMTS Tech. Digest, 109–113 (1990)Google Scholar
  70. 70.
    H.P. Tuinhout, H. Elzinga, J.T. Brugman, F. Postma, Accurate capacitor matching measurements using floating gate test structures. IEEE ICMTS Tech. Digest, 133–137 (1995)Google Scholar
  71. 71.
    H.P. Tuinhout, H. Elzinga, J.T. Brugman, F. Postma, The floating gate measurement technique for characterization of capacitor matching. IEEE Trans. Semicon. Manuf 9(1), 2–8 (1996)CrossRefGoogle Scholar
  72. 72.
    J. Hunter, P. Gudem, S. Winters, A differential floating gate capacitance mismatch measurement technique. IEEE ICMTS Tech. Digest, 142–147 (2000)Google Scholar
  73. 73.
    W. Tian, J. Trogolo, R. Todd, L. Hutter, Gate oxide leakage and floating gate capacitor matching test. IEEE ICMTS Tech. Digest, 19–22 (2007)Google Scholar
  74. 74.
    A. van der Ziel, Noise in Solid State Devices and Circuits (Wiley, New York, NY, 1986)Google Scholar
  75. 75.
    M. von Haartman, M. Östling, Low-Frequency Noise in Advanced MOS Devices (Springer, Dordrecht, The Netherlands, 2007)CrossRefGoogle Scholar
  76. 76.
    A.L. McWhorter, 1/f noise and germanium surface properties, in Semiconductor Surface Physics, ed. by R. H. Kingston, (University of Pennsylvania Press, 1957), pp. 207–228Google Scholar
  77. 77.
    F.N. Hooge, 1/f noise. Physica 83B, 14–23 (1976)Google Scholar
  78. 78.
    H. Nyquist, Thermal agitation of electric charge in conductors. Phys. Rev. 32(1), 110–113 (1928)MathSciNetCrossRefGoogle Scholar
  79. 79.
    J.B. Johnson, Thermal agitation of electricity in conductors. Phys. Rev. 32(1), 97–109 (1928)CrossRefGoogle Scholar
  80. 80.
    W. Schottky, “Ueber spontane Stromschwankungen in vershiedenen Elektrizitaetsleitern,” (on the spontaneous current fluctuations in different conductors). Ann. Phys. 57, 541–567 (1918)CrossRefGoogle Scholar
  81. 81.
    M.J. Kirton, M.J. Uren, Noise in solid-state microstructures: A new perspective on individual defects, interface states and low-frequency (1/f) noise. Adv. Phys. 38(4), 367–468 (1989)CrossRefGoogle Scholar
  82. 82.
    K. Kandiah, F.B. Whiting, Low frequency noise in junction field-effect transistors. Solid State Electron. 31(8), 1079–1088 (1978)CrossRefGoogle Scholar
  83. 83.
    R.C. Jaeger, A.J. Brodersen, Low frequency noise sources, in bipolar junction transistors. IEEE Trans. Electron Dev ED-17(2), 128–134 (1970)CrossRefGoogle Scholar
  84. 84.
    M.J. Kirton, M.J. Uren, S. Collins, Individual interface states and their implication for low-frequency noise in MOSFETs. Appl. Surf. Sci 30(1–4), 148–152 (1987)CrossRefGoogle Scholar
  85. 85.
    C. Surya, T.Y. Hsiang, Surface mobility fluctuations in metal-oxide-semiconductor field-effect transistors. Phys. Rev. B 35(12), 6343–6347 (1987)CrossRefGoogle Scholar
  86. 86.
    K.K. Hung, P.K. Ko, C. Hu, Y.C. Cheng, Random telegraph noise of deep-submicrometer MOSFETs. IEEE Electron Dev. Lett 11(2), 90–92 (1990)CrossRefGoogle Scholar
  87. 87.
    K.S. Ralls, W.J. Skocpol, L.D. Jackel, R.E. Howard, L.A. Fetter, R.W. Epworth, D.M. Tennant, Discrete resistance switching in submicrometer silicon inversion layers: Individual interface traps and low-frequency (1/f?) noise. Phys. Rev. Lett. 52(3), 228–231 (1984)CrossRefGoogle Scholar
  88. 88.
    M.J. Uren, D.J. Day, M.J. Kirton, 1/f and random telegraph noise in silicon metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 47(11), 1195–1197 (1985)CrossRefGoogle Scholar
  89. 89.
    Y.F. Lim, Y.Z. Xiong, N. Singh, R. Yang, Y. Jiang, D.S.H. Chan, W.Y. Loh, L.K. Bera, G.Q. Lo, N. Balasubramanian, D.-L. Kwong, Random telegraph signal noise in gate-all-around Si-FinFET with ultra-narrow body. IEEE Trans. Electron Dev. 77(9), 765–768 (2006)CrossRefGoogle Scholar
  90. 90.
    S.-R. Li, W. McMahon, Y.-L.R. Lu, Y.-H. Lee, RTS noise characterization in flash cells. IEEE Electron Dev. Lett 29(1), 106–108 (2008)CrossRefGoogle Scholar
  91. 91.
    C.M. Compagnoni, R. Gusmeroli, A.S. Spinelli, A. Visconti, RTN VT instability from the stationary trap-filling condition : An analytical spectroscopic investigation. IEEE Trans. Electron Dev 55(2), 655–661 (2008)CrossRefGoogle Scholar
  92. 92.
    R.H. Howard, W.J. Skocpol, L.D. Jackel, P.M. Mankiewich, L.A. Fetter, D.M. Tennant, R. Epworth, K.S. Ralls, Single electron switching events in nanometer-scale Si MOSFETs. IEEE Trans. Electron Dev ED-32(9), 1669–1674 (1985)CrossRefGoogle Scholar
  93. 93.
    S. Machlup, Noise in semiconductors: Spectrum of a two-parameter random signal. J. Appl. Phys. 25, 241–243 (1954)zbMATHCrossRefGoogle Scholar
  94. 94.
    J.L. Plumb, E.R. Chenette, Flicker noise in transistors. IEEE Trans. Electron Dev 10(5), 304–308 (1963)CrossRefGoogle Scholar
  95. 95.
    O.R.D. Buisson, G. Moria, Flicker noise characteristics of polysilicon resistors in submicron BiCMOS technologies. IEEE ICMTS Tech. Digest, 49–51 (1997)Google Scholar
  96. 96.
    E. Zhao, R. Krithivasan, A.K. Sutton, Z. Jin, J.D. Cressler, B. El-Kareh, S. Balster, H. Yasuda, An investigation of low-frequency noise in complementary SiGe HBTs. IEEE Trans. Electron Dev 53(2), 329–338 (2006)CrossRefGoogle Scholar
  97. 97.
    F.N. Hooge, T.G.M. Kleinpenning, L.K.J. Vandamme, Experimental studies on 1/f noise. Rep. Prog. Phys. 44, 479–531 (1981)CrossRefGoogle Scholar
  98. 98.
    P. Dutta, P.M. Horn, Low-frequency fluctuations in solids: 1/f noise. Rev. Mod. Phys. 53, 497–516 (1981)CrossRefGoogle Scholar
  99. 99.
    F.M. Klaassen, Characterization of low 1/f noise in MOS transistors. IEEE Trans. Electron Dev. ED-18(10), 887–891 (1971)CrossRefGoogle Scholar
  100. 100.
    G. Ghibaudo, O. Roux, C.N. Duc, F. Balestra, J. Brini, Improved analysis of low frequency noise in field-effect MOS transistors. Phys. Status Solidi (a) 124–128, 571–581 (1991)CrossRefGoogle Scholar
  101. 101.
    K.K. Hung, P.K. Ko, C.C. Hu, Y.C. Cheng, A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors. IEEE Trans. Electron Dev 37(3), 654–665 (1990)CrossRefGoogle Scholar
  102. 102.
    S. Christensson, I. Lundstrom, C. Svensson, Low frequency noise in m.o.s. transistor. Pt. I—Theory, Pt. II—Experiments. Solid State Electron. 11, 797–820 (1968)CrossRefGoogle Scholar
  103. 103.
    C.T. Sah, F.H. Hielscher, Evidence of the surface origin of the 1//noise. Phys. Rev. Lett. 17, 956 (1966)CrossRefGoogle Scholar
  104. 104.
    T. Boutchacha, G. Ghibaudo, B. Belmekki, Study of low frequency noise in the 0.18 μm silicon CMOS transistors. IEEE ICMTS Tech. Digest, 84–88 (2004)Google Scholar
  105. 105.
    M. Valenza, A. Hoffmann, D. Sodini, A. Laigle, F. Martinez, D. Rigaud, Overview of the impact of downscaling technology on 1/f noise in p-MOSFETs to 90 nm. IEEE Proc. Circuits Dev. Syst 151(2), 102–110 (2004)CrossRefGoogle Scholar
  106. 106.
    J. Chang, A.A. Abidi, C.R. Viswanathan, Flicker noise in CMOS transistors from subthreshold to strong inversion. IEEE Trans. Electron Dev 41(11), 1965–1971 (1994)CrossRefGoogle Scholar
  107. 107.
    B. El-Kareh, J.H. Kim, Low-frequency noise in precision analog components, Korean Conference on Semiconductors (KCS), Seoul, Korea, May 2012Google Scholar
  108. 108.
    R. Brederlow, W. Weber, R. Jurk, C. Dahl, S. Kessle, J. Holz, W. Sauer, P. Klein, B. Lemaire, D. Schmitt-Landsieldel, R. Thewes, Influence of fluorinated gate oxides on the low frequency noise of MOS transistors under analog operation. ESSDERC, 472–475 (1998)Google Scholar
  109. 109.
    M.M. Nelson, K. Yokoyama, M. Thomason, G. Scott, B. Greenwood, Efficacy of fluorine doping at various stages on noise reduction. IEEE Worshop on Microelectr. Electron Dev. (WMED), 17–20 (2005)Google Scholar
  110. 110.
    T.P. Ma, Metal-oxide-semiconductor gate oxide reliability and the role of fluorine. J. Vac. Sci. Technol. A-10, 705–712 (1992)CrossRefGoogle Scholar
  111. 111.
    A. Balasinski, M.H. Tsai, L. Vishnuhotta, T.P. Ma, H.H. Tseng, P.J. Tobin, Interface properties in fluorinated (100) and (111) Si/SiO2 MOSFETs. Microelectr. Eng 22, 97–100 (1993)CrossRefGoogle Scholar
  112. 112.
    P. Wright, K.C. Saraswat, The effect of fluorine in silicon dioxide gate dielectrics. IEEE Trans. Electron Dev 36(5), 879–889 (1989)CrossRefGoogle Scholar
  113. 113.
    J.R. Pfiester, F.K. Baker, T.C. Mele, H.H. Tseng, P.J. Tobin, J.D. Hyden, J.W. Miller, C.D. Gunderson, L.C. Parrillo, The effects of boron penetration on p+ polysilicon gated PMOS devices. IEEE Trans. Electron Dev 37(8), 1842–1850 (1990)CrossRefGoogle Scholar
  114. 114.
    J.J. Sung, C.Y. Lu, A comprehensive study on p + polysilicon-gate MOSFET’s instability with fluorine incorporation. IEEE Trans. Electron Dev 37(11), 2312–2320 (1990)CrossRefGoogle Scholar
  115. 115.
    M. Cao, P.V. Voorde, M. Cox, W. Greene, Boron diffusion and penetration in ultrathin oxide with poly-Si gate. IEEE Electron Dev. Lett 19(8), 291–293 (1998)CrossRefGoogle Scholar
  116. 116.
    K.A. Ellis, R.A. Buhrman, Nitrous oxide (N2O) processing for silicon oxynitride gate dielectrics. IBM J. Res. Dev. 43(3), 287–300 (1999)CrossRefGoogle Scholar
  117. 117.
    M. Marin, J.C. Vildeuil, B. Tavel, B. Duriez, F. Arnaud, P. Stolk, M. Woo, Can 1/f noise in MOSFETs be reduced by gate oxide and channel optimization? Proc. Int. Conf. Noise Fluctuations -ICNF, 195–198 (2005)Google Scholar
  118. 118.
    K.W. Chew, K.S. Yeo, S.-F. Chu, Impact of technology scaling on the 1/f noise of thin and thick gate oxide deep submicron NMOS transistors. IEE Proc.-Circuits Dev. Syst 151(5), 415–421 (2004)CrossRefGoogle Scholar
  119. 119.
    P. Morfouli, G. Ghibaudo, T. Ouisse, E. Vogel, W. Hill, V. Misra, P. McLarty, J.J. Wortman, Low-frequency noise characterization of n- and p-MOSFET’s with ultrathin oxynitride gate films. IEEE Trans. Electron Dev 17(8), 395–397 (1996)CrossRefGoogle Scholar
  120. 120.
    R. Jayaraman, G.C. Sodini, 1/f noise interpretation of the effect of gate oxide nitridation and reoxidation in dielectric traps. IEEE Trans. Electron Dev 37(1), 305–309 (1990)CrossRefGoogle Scholar
  121. 121.
    G. Lucovsky, Ultrathin nitrided gate dielectrics: Plasma processing, chemical characterization, performance, and reliability. IBM J. Res. Dev. 43(3), 301–326 (1999)CrossRefGoogle Scholar
  122. 122.
    M. Da Rold, E. Smoen, S. Mertens, M. Schaekers, G. Badenes, S. Decoutere, Impact of gate oxide nitridation process on 1/f noise in 0.18 μm CMOS. Microelectron. Reliab. 41, 1933–1938 (2001)CrossRefGoogle Scholar
  123. 123.
    R.V. Wang, Y.H. Lee, Y.L.R. Lu, W. McMahon, S. Hu, A. Ghetti, Shallow trench isolation edge effect on random telegraph signal noise and implications for flash memory. IEEE Trans. Electron Dev. 56(9), 2107–2113 (2009)CrossRefGoogle Scholar
  124. 124.
    C.Y. Chan, Y.S. Lin, Y.C. Huang, S.S.H. Hsu, Y.Z. Juang, Impact of STI effect on flicker noise in 0.13 μm nMOSFETs. IEEE Trans. Elecron Dev 54(12), 3383–3392 (2007)Google Scholar
  125. 125.
    P. Srinivasan, W. Xiong, S. Zhao, Low-frequency noise in integrated N-well resistors. IEEE Electron Dev. Lett 31(12), 1476–1478 (2010)CrossRefGoogle Scholar
  126. 126.
    F.N. Hooge, T.G.M. Kleinpenning, L.K.J. Vandamme, Experimental studies on l/f noise. Rep. Prog. Phys. 44(5), 479–532 (1981)CrossRefGoogle Scholar
  127. 127.
    F.N. Hooge, 1/f noise is no surface effect. Phys. Lett. A 29, 141 (1969)CrossRefGoogle Scholar
  128. 128.
    L.K. Vandamme, H.H. Casier, The 1/f noise versus sheet resistance in poly-Si is similar to poly-SiGe resistors and Au-layers. ESSDERC, 365–368 (2004)Google Scholar
  129. 129.
    K.M. Chen, G.W. Huang, J.F. Kuan, H.J. Huang, C.Y. Chang, T.H. Yang, Low frequency noise in boron doped Poly-SiGe resistors. MTT-S, 405–408 (2002)Google Scholar
  130. 130.
    R. Brederlow, W. Weber, C. Dahl, D. Schmitt-Landsiedel, R. Thewes, Low-frequency noise of integrated poly-siliconresistors. IEEE Trans. Electron Dev 48(6), 1180–1187 (2001)CrossRefGoogle Scholar
  131. 131.
    M. Da Rold, S. Van Huylenbroek, B. Knuts, E. Simoen, S. Decoutere, On the basic correlation between polysilicon resistor linearity, matching and 1/f noise. ESSDERC, 448–651 (1999)Google Scholar
  132. 132.
    H. Thibieroz, P. Shaner, Z.C.E. Butler, Mismatch and flicker Noise characterization of tantalum nitride thin film resistors for wireless applications. IEEE ICMTS Tech. Digest, 287–212 (2001)Google Scholar
  133. 133.
    G. Niu, Noise in SiGe HBT RF technology: Physics, modeling, and circuit implications. Proc. IEEE 93(9), 1583–1597 (2005)CrossRefGoogle Scholar
  134. 134.
    J. Cressler (ed.), Integration of a complementary-SiGe BiCMOS process for high-speed Analog application, in Silicon Heterostructure Handbook, (CRC Press, Boca Raton, Florida, 2005)Google Scholar
  135. 135.
    B. El-Kareh, S. Balster, W. Leitz, P. Steinmann, H. Yasuda, M. Corsi, K. Dawoodi, C. Dirnecker, P. Foglietti, A. Haeusler, P. Menz, M. Ramin, T. Scharnagl, M. Schiekofer, M. Schober, U. Schulz, L. Swanson, D. Tatman, M. Waitschull, J.W. Weijtmans, C. Willis, A 5 V complementary-SiGe BiCMOS technology for high-speed precision analog circuits. IEEE Proc. BCTM, 211–214 (2003)Google Scholar
  136. 136.
    W.E. Zhao, A.K. Sutton, B.M. Haugerud, J.D. Cressler, P.W. Marshall, R.A. Reed, S.G. Balster, H. Yasuda, B. El-Kareh, The effect of radiation on 1/f noise in complementary (NPN + PNP) HBTs. IEEE Trans. Nucl. Sci 51(6), 3243–3249 (2004)CrossRefGoogle Scholar
  137. 137.
    P.T. Gray, P.J. Hurst, S.H. Lewis, R.G. Meyer, Analysis and Design of Analog Integrated Circuits (Wiley, New York, NY, 2001), pp. 330–332Google Scholar
  138. 138.
    R.J. Baker, CMOS Circuit Design, Layout, and Simulations (Wiley/IEEE press, Piscataway, New Jersey, 2010), pp. 613–616Google Scholar
  139. 139.
    B. Wang, J.M. Hellums, C.G. Sodini, MOSFET thermal noise modeling for analog integrated circuits. IEEE JSSC 29(7), 833–835 (1994)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Badih El-Kareh
    • 1
  • Lou N. Hutter
    • 2
  1. 1.PIYECedar ParkUSA
  2. 2.Lou Hutter ConsultingDallasUSA

Personalised recommendations