Advertisement

Energy Efficient Scheduling of Smart Home

  • Sajjad Khan
  • Zahoor Ali Khan
  • Nadeem JavaidEmail author
  • Sahibzada Muhammad Shuja
  • Muhammad Abdullah
  • Annas Chand
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 927)

Abstract

Recently a massive increase in the demand of energy has been reported in residential, industrial and commercial sectors. Traditional Grid (TG) with the aging infrastructure is unable to address the increasing demand problem. Smart Grid (SG) enhanced the TG by adopting information and communication based technological solutions to address the increasing electricity demand. Smart Home Energy Management System (SHEMS) plays an important role in the efficacy of SG. In this paper, an Improved Algorithm for Peak to average ratio Reduction (IAPR) in SHEMS is developed. To validate the effectiveness of the IAPR, comparison is made with the renowned meta-heuristic optimization approaches namely Strawberry Algorithm (SA) and Salp Swarm Algorithm (SSA) using two different pricing scheme. It is illustrated by simulations results that the IAPR reduced the PAR to a greater degree as compare to SA and SSA.

Keywords

Smart Grid Optimization techniques Salp Swarm Algorithm Strawberry Algorithm 

References

  1. 1.
    Nadeem, J., Javaid, S., Abdul, W., Ahmed, I., Almogren, A., Alamri, A., Niaz, I.A.: A hybrid genetic wind driven heuristic optimization algorithm for demand side management in smart grid. Energies 10(3), 319 (2017)CrossRefGoogle Scholar
  2. 2.
    Farhangi, H.: The path of the smart grid. IEEE Power Energy Mag. 8(1) (2010)Google Scholar
  3. 3.
    Hussain, B., Javaid, N., Hasan, Q., Javaid, S., Khan, A., Malik, S.: An inventive method for eco-efficient operation of home energy management systems. Energies 11(11), 3091 (2018)CrossRefGoogle Scholar
  4. 4.
    Khalid, A., Javaid, N., Mateen, A., Ilahi, M., Saba, T., Rehman, A.: Enhanced time-of-use electricity price rate using game theory. Electronics 8(1), 48 (2019)CrossRefGoogle Scholar
  5. 5.
    Economics, Frontier, and Sustainability First: Demand side response in the domestic sector-a literature review of major trials. Final report, London, August 2012Google Scholar
  6. 6.
    Shareef, H., Ahmed, M.S., Mohamed, A., Al Hassan, E.: Review on home energy management system considering demand responses, smart technologies, and intelligent controllers. IEEE Access 6, 24498–24509 (2018)CrossRefGoogle Scholar
  7. 7.
    Lior, N.: Sustainable energy development: the present (2009) situation and possible paths to the future. Energy 35(10), 3976–3994 (2010)CrossRefGoogle Scholar
  8. 8.
    Shakeri, M., Shayestegan, M., Reza, S.S., Yahya, I., Bais, B., Akhtaruzzaman, M., Sopian, K., Amin, N.: Implementation of a novel home energy management system (HEMS) architecture with solar photovoltaic system as supplementary source. Renewable Energy 125, 108–120 (2018)CrossRefGoogle Scholar
  9. 9.
    Yang, H.-T., Yang, C.-T., Tsai, C.-C., Chen, G.-J., Chen, S.-Y.: Improved PSO based home energy management systems integrated with demand response in a smart grid. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 275–282. IEEE (2015)Google Scholar
  10. 10.
    Van Der Stelt, S., AlSkaif, T., van Sark, W.: Techno-economic analysis of household and community energy storage for residential prosumers with smart appliances. Appl. Energy 209, 266–276 (2018)CrossRefGoogle Scholar
  11. 11.
    Collotta, M., Pau, G.: A novel energy management approach for smart homes using bluetooth low energy. IEEE J. Sel. Areas Commun. 33(12), 2988–2996 (2015)CrossRefGoogle Scholar
  12. 12.
    Ullah, I., Kim, D.H.: An improved optimization function for maximizing user comfort with minimum energy consumption in smart homes. Energies 10(11), 1818 (2017)CrossRefGoogle Scholar
  13. 13.
    Kazmi, S., Javaid, N., Mughal, M.J., Akbar, M., Ahmed, S.H., Alrajeh, N.: Towards optimization of metaheuristic algorithms for IoT enabled smart homes targeting balanced demand and supply of energy. IEEE Access (2017)Google Scholar
  14. 14.
    Huang, Y., Wang, L., Guo, W., Kang, Q., Qidi, W.: Chance constrained optimization in a home energy management system. IEEE Trans. Smart Grid 9(1), 252–260 (2018)CrossRefGoogle Scholar
  15. 15.
    Wen, Z., O’Neill, D., Maei, H.: Optimal demand response using device-based reinforcement learning. IEEE Trans. Smart Grid 6(5), 2312–2324 (2015)CrossRefGoogle Scholar
  16. 16.
    Qian, L.P., Zhang, Y.J.A., Huang, J., Wu, Y.: Demand response management via real-time electricity price control in smart grids. IEEE J. Sel. Areas Commun. 31(7), 1268–1280 (2013)CrossRefGoogle Scholar
  17. 17.
    Farrokhifar, M., Momayyezi, F., Sadoogi, N., Safari, A.: Real-time based approach for intelligent building energy management using dynamic price policies. Sustain. Cities Soc. 37, 85–92 (2018)CrossRefGoogle Scholar
  18. 18.
    Khan, A., Javaid, N., Ahmad, A., Akbar, M., Khan, Z.A., Ilahi, M.: A priority-induced demand side management system to mitigate rebound peaks using multiple knapsack. J. Ambient Intell. Humanized Comput., 1–24 (2018)Google Scholar
  19. 19.
    Pooranian, Z., Abawajy, J.H., Conti, M.: Scheduling distributed energy resource operation and daily power consumption for a smart building to optimize economic and environmental parameters. Energies 11(6), 1348 (2018)CrossRefGoogle Scholar
  20. 20.
    Merrikh-Bayat, F.: A numerical optimization algorithm inspired by the strawberry plant. arXiv preprint arXiv:1407.7399 (2014)
  21. 21.
    Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sajjad Khan
    • 1
  • Zahoor Ali Khan
    • 2
  • Nadeem Javaid
    • 1
    Email author
  • Sahibzada Muhammad Shuja
    • 1
  • Muhammad Abdullah
    • 1
  • Annas Chand
    • 3
  1. 1.COMSATS University IslamabadIslamabadPakistan
  2. 2.Computer Information ScienceHigher Colleges of TechnologyFujairahUAE
  3. 3.COMSATS University IslamabadAbbotabadPakistan

Personalised recommendations