Advertisement

A Distance-Based Advertisement-Delivery Method for Vehicular DTN

  • Shogo Nakasaki
  • Yu Yoshino
  • Makoto IkedaEmail author
  • Leonard Barolli
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 927)

Abstract

In this paper, we propose a distance-based message relaying method to limit the replicated bundle messages in Vehicular Delay/Disruption/Disconnection Tolerant Networking (DTN). From the simulation results, we found that our proposed recovery method limits the duplicated bundle messages considering specified area by applying the distance-based advertisement-delivery method.

Keywords

Message relaying method Vehicular DTN Distance-based advertisement-delivery 

References

  1. 1.
    Delay- and disruption-tolerant networks (DTNs) tutorial. NASA/JPL’s Interplanetary Internet (IPN) Project (2012). http://www.warthman.com/images/DTN_Tutorial_v2.0.pdf
  2. 2.
    Recommendation ITU-R P.1411-7: Propagation data and prediction methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300 MHz to 100 GHz. ITU (2013)Google Scholar
  3. 3.
    Araniti, G., Bezirgiannidis, N., Birrane, E., Bisio, I., Burleigh, S., Caini, C., Feldmann, M., Marchese, M., Segui, J., Suzuki, K.: Contact graph routing in DTN space networks: overview, enhancements and performance. IEEE Commun. Mag. 53(3), 38–46 (2015)CrossRefGoogle Scholar
  4. 4.
    Araniti, G., Campolo, C., Condoluci, M., Iera, A., Molinaro, A.: LTE for vehicular networking: a survey. IEEE Commun. Mag. 21(5), 148–157 (2013)CrossRefGoogle Scholar
  5. 5.
    Caini, C., Cruickshank, H., Farrell, S., Marchese, M.: Delay- and disruption-tolerant networking (DTN): an alternative solution for future satellite networking applications. Proc. IEEE 99(11), 1980–1997 (2011)CrossRefGoogle Scholar
  6. 6.
    Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K., Fall, K., Weiss, H.: Delay-tolerant networking architecture. IETF RFC 4838 (Informational), April 2007Google Scholar
  7. 7.
    Dias, J.A.F.F., Rodrigues, J.J.P.C., Xia, F., Mavromoustakis, C.X.: A cooperative watchdog system to detect misbehavior nodes in vehicular delay-tolerant networks. IEEE Trans. Ind. Electron. 62(12), 7929–7937 (2015)CrossRefGoogle Scholar
  8. 8.
    Fall, K.: A delay-tolerant network architecture for challenged Internets. In: Proceedings of the International Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM 2003, pp. 27–34 (2003)Google Scholar
  9. 9.
    Grassi, G., Pesavento, D., Pau, G., Vuyyuru, R., Wakikawa, R., Zhang, L.: VANET via named data networking. In: Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS 2014), pp. 410–415, April 2014Google Scholar
  10. 10.
    Ikeda, M., Ishikawa, S., Barolli, L.: An enhanced message suppression controller for vehicular-delay tolerant networks. In: Proceedings of the 30th IEEE International Conference on Advanced Information Networking and Applications (IEEE AINA-2016), pp. 573–579, March 2016Google Scholar
  11. 11.
    Mahmoud, A., Noureldin, A., Hassanein, H.S.: VANETs positioning in urban environments: a novel cooperative approach. In: Proceedings of the IEEE 82nd Vehicular Technology Conference (VTC-2015 Fall), pp. 1–7, September 2015Google Scholar
  12. 12.
    Ohn-Bar, E., Trivedi, M.M.: Learning to detect vehicles by clustering appearance patterns. IEEE Trans. Intell. Transp. Syst. 16(5), 2511–2521 (2015)CrossRefGoogle Scholar
  13. 13.
    Radenkovic, M., Walker, A.: CognitiveCharge: disconnection tolerant adaptive collaborative and predictive vehicular charging. In: Proceedings of the 4th ACM MobiHoc Workshop on Experiences with the Design and Implementation of Smart Objects (SMARTOBJECTS-2018), June 2018Google Scholar
  14. 14.
    Ramanathan, R., Hansen, R., Basu, P., Hain, R.R., Krishnan, R.: Prioritized epidemic routing for opportunistic networks. In: Proceedings of the 1st International MobiSys Workshop on Mobile Opportunistic Networking (MobiOpp 2007), pp. 62–66 (2007)Google Scholar
  15. 15.
    Rüsch, S., Schürmann, D., Kapitza, R., Wolf, L.: Forward secure delay-tolerant networking. In: Proceedings of the 12th Workshop on Challenged Networks (CHANTS-2017), pp. 7–12, October 2017Google Scholar
  16. 16.
    Rohrer, J.P., Mauldin, A.N.: Implementation of epidemic routing with IP convergence layer in ns-3. In: Proceedings of the 10th Workshop on NS-3 (WNS3-2018), pp. 69–76, June 2018Google Scholar
  17. 17.
    Sato, F., Kikuchi, R.: Hybrid routing scheme combining with geo-routing and DTN in VANET. In: Proceedings of the 10th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS-2016), pp. 250–255, July 2016Google Scholar
  18. 18.
    Scenargie: Space-time engineering, LLC. http://www.spacetime-eng.com/
  19. 19.
    Stute, M., Maass, M., Schons, T., Hollick, M.: Reverse engineering human mobility in large-scale natural disasters. In: Proceedings of the 20th ACM International Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM-2017), pp. 219–226, November 2017Google Scholar
  20. 20.
    Theodoropoulos, T., Damousis, Y., Amditis, A.: A load balancing control algorithm for EV static and dynamic wireless charging. In: Proceedings of the IEEE 81st Vehicular Technology Conference (VTC-2015 Spring), pp. 1–5, May 2015Google Scholar
  21. 21.
    Tornell, S.M., Calafate, C.T., Cano, J.C., Manzoni, P.: DTN protocols for vehicular networks: an application oriented overview. IEEE Commun. Surv. Tutor. 17(2), 868–887 (2015)CrossRefGoogle Scholar
  22. 22.
    Uchida, N., Ishida, T., Shibata, Y.: Delay tolerant networks-based vehicle-to-vehicle wireless networks for road surveillance systems in local areas. Int. J. Space Based Situated Comput. 6(1), 12–20 (2016)CrossRefGoogle Scholar
  23. 23.
    Urquiza-Aguiar, L., Igartua, M.A., Tripp-Barba, C., Calderón-Hinojosa, X.: 2hGAR: 2-hops geographical anycast routing protocol for vehicle-to-infrastructure communications. In: Proceedings of the 15th ACM International Symposium on Mobility Management and Wireless Access (MobiWac-2017), pp. 145–152, November 2017Google Scholar
  24. 24.
    Vahdat, A., Becker, D.: Epidemic routing for partially-connected ad hoc networks. Duke University, Technical report (2000)Google Scholar
  25. 25.
    Wyatt, J., Burleigh, S., Jones, R., Torgerson, L., Wissler, S.: Disruption tolerant networking flight validation experiment on NASA’s EPOXI mission. In: Proceedings of the 1st International Conference on Advances in Satellite and Space Communications (SPACOMM-2009), pp. 187–196, July 2009Google Scholar
  26. 26.
    Yoshino, Y., Nakasaki, S., Ikeda, M., Barolli, L.: A threshold-based adaptive method for message suppression controller in vehicular DTNs. In: Proceedings of the 13th International Conference on Broad-Band Wireless Computing, Communication and Applications (BWCCA-2018), pp. 517–524, October 2018Google Scholar
  27. 27.
    Zhang, W., Jiang, S., Zhu, X., Wang, Y.: Cooperative downloading with privacy preservation and access control for value-added services in VANETs. Int. J. Grid Util. Comput. 7(1), 50–60 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shogo Nakasaki
    • 1
  • Yu Yoshino
    • 1
  • Makoto Ikeda
    • 2
    Email author
  • Leonard Barolli
    • 2
  1. 1.Graduate School of EngineeringFukuoka Institute of TechnologyFukuokaJapan
  2. 2.Department of Information and Communication EngineeringFukuoka Institute of TechnologyFukuokaJapan

Personalised recommendations