Advertisement

Short Term Load Forecasting Using XGBoost

  • Raza Abid Abbasi
  • Nadeem JavaidEmail author
  • Muhammad Nauman Javid Ghuman
  • Zahoor Ali Khan
  • Shujat Ur Rehman
  • Amanullah
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 927)

Abstract

For efficient use of smart grid, exact prediction about the in-future coming load is of great importance to the utility. In this proposed scheme initially we converted daily Australian energy market operator load data to weekly data time series. Furthermore, we used eXtreme Gradient Boosting (XGBoost) for extracting features from the data. After feature selection we used XGBoost for the purpose of forecasting the electricity load for single time lag. XGBoost perform extremely well for time series prediction with efficient computing time and memmory resources usage. Our proposed scheme outperformed other schemes for mean average percentage error metric.

References

  1. 1.
    Mathaba, T., Xia, X., Zhang, J.: Analysing the economic benefit of electricity price forecast in industrial load scheduling. Electr. Power Syst. Res. 116, 158–165 (2014)CrossRefGoogle Scholar
  2. 2.
    Sarada, K., Bapiraju, V.: Comparison of day-ahead price forecasting in energy market using Neural Network and Genetic Algorithm. In: Proceeding of the International Conference on Smart Electric Grid, pp. 1–5 (2014)Google Scholar
  3. 3.
    Shafie-Khah, M., Moghaddam, M.P., Sheikh-El-Eslami, M.: Price forecasting of day-ahead electricity markets using a hybrid forecast method. Energy Convers. Manag. 52(5), 2165–2169 (2011)CrossRefGoogle Scholar
  4. 4.
    Garcia, R.C., Contreras, J., Van Akkeren, M., Garcia, J.B.C.: A GARCH forecasting model to predict day-ahead electricity prices. IEEE Trans. Power Syst. 20(2), 867–874 (2005)CrossRefGoogle Scholar
  5. 5.
    Shahidehpour, M., Yamin, H., Li, Z.: Market overview in electric power systems. In: Market Operations in Electric Power Systems, pp. 1–20. Wiley, New York (2002)Google Scholar
  6. 6.
    Ci-wei, G., Bompard, E., Napoli, R., Cheng, H.: Price forecast in the competitive electricity market by support vector machine. Phys. A: Stat. Mech. Appl. 382(1), 98–113 (2007)CrossRefGoogle Scholar
  7. 7.
    Cai, Y., Lin, J., Wan, C., Song, Y.: A stochastic Bi-level trading model for an active distribution company with distributed generation and interruptible loads. IET Renew. Power Gener. 11(2), 278–288 (2017)CrossRefGoogle Scholar
  8. 8.
    Weron, R.: Electricity price forecasting: a review of the state-of-the-art with a look into the future. Int. J. Forecast. 30(4), 1030–1081 (2014)CrossRefGoogle Scholar
  9. 9.
    Hu, L., Taylor, G.: A novel hybrid technique for short-term electricity price forecasting in UK electricity markets. J. Int. Counc. Electr. Eng. 4(2), 114–120 (2014)CrossRefGoogle Scholar
  10. 10.
    Voronin, S., Partanen, J.: Forecasting electricity price and demand using a hybrid approach based on wavelet transform, ARIMA and neural networks. Int. J. Energy Res. 38(5), 626–637 (2014)CrossRefGoogle Scholar
  11. 11.
    Kou, P., Liang, D., Gao, L., Lou, J.: Probabilistic electricity price forecasting with variational heteroscedastic Gaussian process and active learning. Energy Convers. Manag. 89, 298–308 (2015)CrossRefGoogle Scholar
  12. 12.
    Shrivastava, N.A., Panigrahi, B.K.: A hybrid wavelet-ELM based short term price forecasting for electricity markets. Int. J. Electr. Power Energy Syst. 55, 41–50 (2014)CrossRefGoogle Scholar
  13. 13.
    He, K., Xu, Y., Zou, Y., Tang, L.: Electricity price forecasts using a curvelet denoising based approach. Phys. A: Stat. Mech. Appl. 425, 1–9 (2015)CrossRefGoogle Scholar
  14. 14.
    Wan, C., Xu, Z., Wang, Y., Dong, Z.Y., Wong, K.P.: A hybrid approach for probabilistic forecasting of electricity price. IEEE Trans. Smart Grid 5(1), 463–470 (2014)CrossRefGoogle Scholar
  15. 15.
    Wan, C., Niu, M., Song, Y., Xu, Z.: Pareto optimal prediction intervals of electricity price. IEEE Trans. Power Syst. 32(1), 817–819 (2017)CrossRefGoogle Scholar
  16. 16.
    Liu, B., Nowotarski, J., Hong, T., Weron, R.: Probabilistic load forecasting via quantile regression averaging on sister forecasts. IEEE Trans. Smart Grid 8(2), 1 (2017).  https://doi.org/10.1109/tsg.2015.2437877CrossRefGoogle Scholar
  17. 17.
    Wanga, P., Liu, B., Hongb, T.: Electric load forecasting with recency effect: a big data approach. Int. J. Forecast. 32, 585–597 (2016)CrossRefGoogle Scholar
  18. 18.
    Chou, J.-S., Ngo, N.-T.: Smart grid data analytics framework for increasing energy savings in residential buildings. Autom. Constr. 72, 247–257 (2016)CrossRefGoogle Scholar
  19. 19.
    Ludwig, N., Feuerriegel, S., Neumann, D.: Putting big data analytics to work: feature selection for forecasting electricity prices using the LASSO and random forests. ISSN 1246-0125 (Print) 2116-7052Google Scholar
  20. 20.
    Lago, J., De Ridder, F., De Schutter, B.: Forecasting spot electricity prices: deep learning approaches and empirical comparison of traditional algorithms. Appl. Energy 221, 386–405 (2018)CrossRefGoogle Scholar
  21. 21.
    Wang, L., Zhang, Z., Chen, J.: Short-term electricity price forecasting with stacked denoising autoencoders. IEEE Trans. Power Syst. 32(4), 2673–2681 (2017)CrossRefGoogle Scholar
  22. 22.
    Lagoa, J., De Ridder, F., Vrancx, P., De Schutter, B.: Forecasting day-ahead electricity prices in Europe: the importance of considering market integration. Appl. Energy 211(1), 890–903 (2018)CrossRefGoogle Scholar
  23. 23.
    Raviv, E., Bouwman, K.E., van Dijk, D.: Forecasting day-ahead electricity prices: utilizing hourly prices. Energy Econ. 50, 227–239 (2015)CrossRefGoogle Scholar
  24. 24.
    Xiao, L., Jianzhou Wang, R., Hou, J.W.: A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting. Energy 82(15), 524–549 (2015)CrossRefGoogle Scholar
  25. 25.
    Singh, S., Yassine, A.: Big data mining of energy time series for behavioral analytics and energy consumption forecasting. Energies 11, 452 (2018)CrossRefGoogle Scholar
  26. 26.
    Moon, J., Kim, K.-H., Kim, Y., Hwang, E.: A short-term electric load forecasting scheme using 2-stage predictive analytics. In: 2018 IEEE International Conference on Big Data and Smart Computing (2018)Google Scholar
  27. 27.
    González, J.P., San Roque, A.M., Perez, E.A.: Forecasting functional time series with a new Hilbertian ARMAX model: application to electricity price forecasting. IEEE Trans. Power Syst. 33(1), 545–556 (2018)CrossRefGoogle Scholar
  28. 28.
    Luo, J., Hong, T., Fang, S.-C.: Benchmarking robustness of load forecasting models under data integrity attacks. Int. J. Forecast. 34, 89–104 (2018)CrossRefGoogle Scholar
  29. 29.
    Dong, G., Chen, Z.: Data driven energy management in a home microgrid based on Bayesian optimal algorithm. IEEE Trans. Ind. InformGoogle Scholar
  30. 30.
    Fausett, L.: Fundamentals of Neural Networks: Architectures, Algorithms, and Applications. Pearson Education, Delhi (2006)zbMATHGoogle Scholar
  31. 31.
    Shekhar, S., Amin, M.B.: Generalization by neural networks. IEEE Trans. Knowl. Data Eng. 4, 177–185 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Raza Abid Abbasi
    • 1
  • Nadeem Javaid
    • 1
    Email author
  • Muhammad Nauman Javid Ghuman
    • 2
  • Zahoor Ali Khan
    • 3
  • Shujat Ur Rehman
    • 2
  • Amanullah
    • 2
  1. 1.COMSATS Institute of Information TechnologyIslamabadPakistan
  2. 2.Quaid-i-Azam UniversityIslamabadPakistan
  3. 3.Computer Information ScienceHigher Colleges of TechnologyFujairahUAE

Personalised recommendations