Advertisement

Electricity Load Forecasting for Each Day of Week Using Deep CNN

  • Sajjad Khan
  • Nadeem JavaidEmail author
  • Annas Chand
  • Abdul Basit Majeed Khan
  • Fahad Rashid
  • Imran Uddin Afridi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 927)

Abstract

In smart grid, precise and accurate electricity load forecasting is one of the most challenging tasks. It is due to the high volatile, non-stationary and non-linear behavior of electricity load data. In this paper, a Deep Convolution Neural Network (DCNN) model is proposed to forecast the electricity load for each day of the week of Victoria (Australia). To forecast the electricity load for one day of the week, we analyzed the electricity load data consumed on the same day for the previous three months. To show the usefulness of our proposed scheme, comparison is made with the state of the art forecasting models namely recurrent neural network, extreme learning machine, CNN and auto regressive integrated moving average. Results show that the proposed DCNN has the lowest mean absolute percentage error, mean absolute error and root mean square error of 2.1%, 138.771 and 116.417.

Keywords

Smart grid Forecasting Energy management Neural Network Deep learning 

References

  1. 1.
    https://www.aemo.com.au/. Accessed 01 Jan 2019
  2. 2.
    Singh, S., Yassine, A.: Big data mining of energy time series for behavioral analytics and energy consumption forecasting. Energies 11(2), 452 (2018)CrossRefGoogle Scholar
  3. 3.
    Ahmad, T., Chen, H.: Short and medium-term forecasting of cooling and heating load demand in building environment with data-mining based approaches. Energy Build. 166, 460–476 (2018)CrossRefGoogle Scholar
  4. 4.
    Chen, K., Chen, K., Wang, Q., He, Z., Hu, J., He, J.: Short-term load forecasting with deep residual networks. IEEE Trans. Smart Grid (2018)Google Scholar
  5. 5.
    Jesus, L., De Ridder, F., De Schutter, B.: Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms. Appl. Energy 221, 386–405 (2018)CrossRefGoogle Scholar
  6. 6.
    Ryu, S., Noh, J., Kim, H.: Deep neural network based demand side short term load forecasting. Energies 10(1), 3 (2016)CrossRefGoogle Scholar
  7. 7.
    Liu, J., Li, C.: The short-term power load forecasting based on sperm whale algorithm and wavelet least square support vector machine with DWT-IR for feature selection. Sustainability 9(7), 1188 (2017)CrossRefGoogle Scholar
  8. 8.
    Ashfaq, A., Javaid, N., Guizani, M., Alrajeh, N., Khan, Z.A.: An accurate and fast converging short-term load forecasting model for industrial applications in a smart grid. IEEE Trans. Ind. Inform. 13(5), 2587–2596 (2017)CrossRefGoogle Scholar
  9. 9.
    Huang, G.-B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 513–529 (2012)CrossRefGoogle Scholar
  10. 10.
    Ahmad, A., Javaid, N., Mateen, A., Awais, M., Khan, Z.: Short-term load forecasting in smart grids: an intelligent modular approach. Energies 12(1), 164 (2019)CrossRefGoogle Scholar
  11. 11.
    Zahid, M., Ahmed, F., Javaid, N., Abbasi, R.A., Kazmi, H.S.Z., Javaid, A., Bilal, M., Akbar, M., Ilahi, M.: Electricity price and load forecasting using enhanced convolutional neural network and enhanced support vector regression in smart grids. Electronics 8(2), 122 (2019)CrossRefGoogle Scholar
  12. 12.
    Fallah, S., Deo, R., Shojafar, M., Conti, M., Shamshirband, S.: Computational intelligence approaches for energy load forecasting in smart energy management grids: state of the art, future challenges, and research directions. Energies 11(3), 596 (2018)CrossRefGoogle Scholar
  13. 13.
    Luo, J., Vong, C.-M., Wong, P.-K.: Sparse Bayesian extreme learning machine for multi-classification. IEEE Trans. Neural Netw. Learn. Syst. 25(4), 836–843 (2014)CrossRefGoogle Scholar
  14. 14.
    Yu, J., Wang, S., Xi, L.: Evolving artificial neural networks using an improved PSO and DPSO. Neurocomputing 71(4–6), 1054–1060 (2008)CrossRefGoogle Scholar
  15. 15.
    Zeng, Y.-R., Zeng, Y., Choi, B., Wang, L.: Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network. Energy 127, 381–396 (2017)CrossRefGoogle Scholar
  16. 16.
    Saremi, S., Mirjalili, S.Z., Mirjalili, S.M.: Evolutionary population dynamics and grey wolf optimizer. Neural Comput. Appl. 26(5), 1257–1263 (2015)CrossRefGoogle Scholar
  17. 17.
    Ertugrul, Ö.F.: Forecasting electricity load by a novel recurrent extreme learning machines approach. Int. J. Electr. Power Energy Syst. 78, 429–435 (2016)CrossRefGoogle Scholar
  18. 18.
    Khan, M., Javaid, N., Naseem, A., Ahmed, S., Riaz, M., Akbar, M., Ilahi, M.: Game theoretical demand response management and short-term load forecasting by knowledge based systems on the basis of priority index. Electronics 7(12), 431 (2018)CrossRefGoogle Scholar
  19. 19.
    Fan, C., Xiao, F., Zhao, Y.: A short-term building cooling load prediction method using deep learning algorithms. Appl. Energy 195, 222–233 (2017)CrossRefGoogle Scholar
  20. 20.
    Shi, H., Minghao, X., Li, R.: Deep learning for household load forecasting-a novel pooling deep RNN. IEEE Trans. Smart Grid 9(5), 5271–5280 (2018)CrossRefGoogle Scholar
  21. 21.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  22. 22.
    Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control. Wiley, Hoboken (2015)zbMATHGoogle Scholar
  23. 23.
    Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: 2004 Proceedings of the IEEE International Joint Conference on Neural Networks, vol. 2, pp. 985–990. IEEE (2004)Google Scholar
  24. 24.
    Huang, G.-B., Chen, L., Siew, C.K.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)CrossRefGoogle Scholar
  25. 25.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sajjad Khan
    • 1
  • Nadeem Javaid
    • 1
    Email author
  • Annas Chand
    • 2
  • Abdul Basit Majeed Khan
    • 3
  • Fahad Rashid
    • 4
  • Imran Uddin Afridi
    • 1
  1. 1.COMSATS University IslamabadIslamabadPakistan
  2. 2.COMSATS University Islamabad, Abbottabad CampusAbbottabadPakistan
  3. 3.Abasyin University IslamabadIslamabadPakistan
  4. 4.Bahria University IslamabadIslamabadPakistan

Personalised recommendations