Advertisement

Cost Benefits of Multi-cloud Deployment of Dynamic Computational Intelligence Applications

  • Geir HornEmail author
  • Paweł Skrzypek
  • Katarzyna Materka
  • Tomasz Przeździȩk
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 927)

Abstract

Cost savings is one of the main motivations for deploying commercial applications in the Cloud. These savings are more pronounced for applications with varying computational needs, like Computational Intelligence (CI) applications. However, continuously deploying, adapting, and decommissioning the provided Cloud resources manually is challenging, and autonomous deployment support is necessary. This paper discusses the specific challenges of CI applications and provide calculations to show that dynamic use of Cloud resources will result in significant cost benefits for CI applications.

References

  1. 1.
    Agrawal, A., Gans, J., Goldfarb, A.: Prediction Machines: The Simple Economics of Artificial Intelligence. Harvard Business Review Press, Brighton (2018)Google Scholar
  2. 2.
    Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011).  https://doi.org/10.1016/j.swevo.2011.03.001CrossRefGoogle Scholar
  3. 3.
    Mesbah, A.: Stochastic model predictive control: an overview and perspectives for future research. IEEE Control Syst. 36(6), 30–44 (2016).  https://doi.org/10.1109/MCS.2016.2602087MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bede, B.: Mathematics of Fuzzy Sets and Fuzzy Logic. Studies in Fuzziness and Soft Computing, vol. 295. Springer, Berlin (2013)zbMATHGoogle Scholar
  5. 5.
    Chui, C.K.: Wavelets: A Tutorial in Theory and Applications. First and Second Volume of Wavelet Analysis and Its Applications (1992)Google Scholar
  6. 6.
    Cochran, W.T., Cooley, J.W., Favin, D.L., Helms, H.D., Kaenel, R.A., Lang, W.W., Maling, G.C., Nelson, D.E., Rader, C.M., Welch, P.D.: What is the fast fourier transform? Proc. IEEE 55(10), 1664–1674 (1967).  https://doi.org/10.1109/PROC.1967.5957CrossRefGoogle Scholar
  7. 7.
    Fogel, D.B.: What is evolutionary computation? IEEE Spectr. 37(2), 26–32 (2000).  https://doi.org/10.1109/6.819926CrossRefGoogle Scholar
  8. 8.
    Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Optimization and Neural Computation Series. Athena Scientific, Belmont (1996)zbMATHGoogle Scholar
  9. 9.
    Dreibholz, T., Mazumdar, S., Zahid, F., Taherkordi, A., Gran, E.G.: Mobile edge as part of the multi-cloud ecosystem: a performance study. In: Proceedings of the 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), Pavia, Lombardia/Italy (2019)Google Scholar
  10. 10.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015)Google Scholar
  11. 11.
    Horn, G., Skrzypek, P.: MELODIC: utility based cross cloud deployment optimisation. In: 32nd International Conference on Advanced Information Networking and Applications (AINA) Workshops, Poland, pp. 360–367. IEEE Computer Society, Krakow (2018).  https://doi.org/10.1109/WAINA.2018.00112
  12. 12.
    Hsieh, T.J., Hsiao, H.F., Yeh, W.C.: Forecasting stock markets using wavelet transforms and recurrent neural networks: an integrated system based on artificial bee colony algorithm. Appl. Soft Comput. 11(2), 2510–2525 (2011).  https://doi.org/10.1016/j.asoc.2010.09.007. The Impact of Soft Computing for the Progress of Artificial IntelligenceCrossRefGoogle Scholar
  13. 13.
    Witten, I.H., et al.: Data Mining: Practical Machine Learning Tools and Techniques (2016)Google Scholar
  14. 14.
    Kacprzyk, J., Pedrycz, W. (eds.): Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin (2015)zbMATHGoogle Scholar
  15. 15.
    Lee, J.M., Lee, J.H.: Approximate dynamic programming strategies and their applicability for process control: a review and future directions. Int. J. Control Autom. Syst. 2(3), 263–278 (2004)Google Scholar
  16. 16.
    Zhang, J., Zhan, Z.H., Lin, Y., Chen, N., Gong, Y.J., Zhong, J.H., Chung, H.S.H., Li, Y., Shi, Y.H.: Evolutionary computation meets machine learning: a survey. IEEE Comput. Intell. Mag. 6(4), 68–75 (2011).  https://doi.org/10.1109/MCI.2011.942584CrossRefGoogle Scholar
  17. 17.
    Kim, J., El-Khamy, M., Lee, J.: Residual LSTM: design of a deep recurrent architecture for distant speech recognition. CoRR abs/1701.03360 (2017)Google Scholar
  18. 18.
    LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 255–258. MIT Press, Cambridge (1995)Google Scholar
  19. 19.
    Chen, X.-W., Lin, X.: Big data deep learning: challenges and perspectives. IEEE Access 2, 514–525 (2014)CrossRefGoogle Scholar
  20. 20.
    Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016) (2016)Google Scholar
  21. 21.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning, vol. 9. MIT Press, Boston (1998)Google Scholar
  22. 22.
    Eberhart, R., Shi, Y., Kennedy, J.: Swarm Intelligence. The Morgan Kaufmann Series in Artificial Intelligence, 1st edn. Morgan Kaufmann, Burlington (2001)Google Scholar
  23. 23.
    Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.P., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016)CrossRefGoogle Scholar
  24. 24.
    Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L.R., Lai, M., Bolton, A., Chen, Y., Lillicrap, T.P., Hui, F., Sifre, L., van den Driessche, G., Graepel, T., Hassabis, D.: Mastering the game of go without human knowledge. Nature 550, 354–359 (2017)CrossRefGoogle Scholar
  25. 25.
    Walczak, S.: Artificial neural networks. In: Mehdi Khosrow-Pour, D.B.A. (ed.) Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and Human-Computer Interaction, vol. 1, pp. 40–53 (2019). Chapter 4Google Scholar
  26. 26.
    Umpleby, S.A., Dent, E.B.: The origins and purposes of several traditions in systems theory and cybernetics. Cybern. Syst. 30(2), 79–103 (1999).  https://doi.org/10.1080/019697299125299CrossRefzbMATHGoogle Scholar
  27. 27.
    Sun, S.: A survey of multi-view machine learning. Neural Comput. Appl. 23(7), 2031–2038 (2013).  https://doi.org/10.1007/s00521-013-1362-6CrossRefGoogle Scholar
  28. 28.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. CoRR abs/1409.4842 (2014)Google Scholar
  29. 29.
    Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. CoRR abs/1706.03762 (2017)Google Scholar
  30. 30.
    Pedrycz, W., Ekel, P., Parreiras, R.: Fuzzy Multicriteria Decision-Making: Models, Methods and Applications. Wiley, Hoboken (2010)CrossRefGoogle Scholar
  31. 31.
    Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982).  https://doi.org/10.1007/BF01001956CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Geir Horn
    • 1
    Email author
  • Paweł Skrzypek
    • 2
  • Katarzyna Materka
    • 2
  • Tomasz Przeździȩk
    • 3
  1. 1.University of OsloOsloNorway
  2. 2.7Bulls.comWarsawPoland
  3. 3.CE-Traffic, a.s.Praha 8Czech Republic

Personalised recommendations