Advertisement

MVMM: Data Center Scheduler Algorithm for Virtual Machine Migration

  • Nawel KortasEmail author
  • Habib Youssef
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 926)

Abstract

Migration algorithms and conception of data centers have significant impact on cost and service qualities. Researchers are looking to find effective solutions for Virtual Machine (VM) migration in data centers to reduce power consumption under the given quality of service constraints. This paper presents a model for the consistency of VM migration in a data center by Dynamic Bayesian Networks (DBN). The novelty of our work is to construct a DBN according to the probabilistic dependencies between the parameters in order to make decisions about the corresponding placement of VM in the distributed data centers. In addition, to evaluate the proposed model, we add a new scheduler algorithm inspiring from the DBN model into GreenCloud simulator, called MVMM (Minimization of Virtual Machine Migration), which provides a VM score to make decisions about the matching placement of VMs in order to allow a minimization of future VMs migrations. The results reveal that the use of the proposed approach can reduce energy consumption until 8% compared to other scheduler algorithms.

Keywords

Virtual machine Data center Cloud computing Dynamic Bayesian Networks SLA VM migration algorithm 

References

  1. 1.
    Cheng, J., Greiner, R., Kelly, J., Bell, D.A., Liu, W.: Learning Bayesian networks from data: an information-theory based approach. Artif. Intell. 137, 43 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Gonzales, C., Jouve, N.: Learning Bayesian networks structure using Markov networks. In: Proceedings of PGM, pp. 147–154 (2006)Google Scholar
  3. 3.
    Deviren, M., Daoudi, K.: Structural learning of dynamic Bayesian networks in speech recognition. In: Proceedings of EUROSPEECH (2001)Google Scholar
  4. 4.
    Ghahramani, Z.: Learning dynamic Bayesian networks. In: Adaptive Processing of Sequences and Data Structures, pp. 168–197. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Lähdesmäki, H., Shmule, I.: Learning the structure of dynamic Bayesian networks from time series and steady state measurements. Mach. Learn. 71, 185–217 (2008)CrossRefGoogle Scholar
  6. 6.
    Robinson, J.W., Hartemink, A.J.: Learning non-stationary dynamic Bayesian networks. J. Mach. Learn. Res. 11, 3647–3680 (2010)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Gener. Comput. Syst. 28(5), 755–768 (2012)CrossRefGoogle Scholar
  8. 8.
    Borgetto, D.: Allocation et Réallocation de services pour économies d’énergie dans les clusters et les clouds’, IRIT Institut de recherche en info de Toulouse (2013)Google Scholar
  9. 9.
    Emir, I., Dobrisa, D.: Grid infrastructure monitoring system based on nagios. In: Workshop on Grid monitoring, pp. 23–28. ACM (2009)Google Scholar
  10. 10.
    Kliazovich, D., Bouvry, P., Khan, S.U.: GreenCloud: a packet-level simulator of energy-aware cloud computing data centers (2010)Google Scholar
  11. 11.
    Choi, J., Govindan, S., Urgaonkar, B., Sivasubramaniam, A.: Profiling, prediction and capping of power consumption in consolidated environments. In: IEEE International Symposium on Modeling, Analysis and Simulation of Computers and Telecommunication Systems (MASCOTS) (2008). Print ISSN: 1526-7539Google Scholar
  12. 12.
    Wang, Y., Keller, E., Biskeborn, B., Merwe, J., Rexford, J.: Virtual routers on the move: live router migration as a network-management primitive. IEEE SIGCOMM (2008)Google Scholar
  13. 13.
    Nathuji, R., Schwan, K., Somani, A., Joshi, Y.: VPM tokens: virtual machine-aware power budgeting in datacenters. Cluster Comput. 12(2), 189–203 (2009)CrossRefGoogle Scholar
  14. 14.
    Sonneck, J., Chandra, A.: Virtual putty: reshaping the physical footprint of virtual machines. In: HotCloud Workshop in Conjunction with USENIX Annual Technical Conference (2009)Google Scholar
  15. 15.
    Clark, C., et al.: Live migration of Virtual machines. In: Proceedings of the 2nd Symposium on Networked Systems Design & Implementation (NSDIS). USENIX Association, CA, USA (2005)Google Scholar
  16. 16.
    RedHat Enterprise Virtualization: System Scheduler. Data sheet. http://www.redhat.com/f/pdf/rhev/doc060-
  17. 17.
    Sharkh, M.A., Shali, A., Ouda, A.: Optimal and suboptimal resource allocation techniques in cloud computing data centers. J. Cloud Comput.: Adv. Syst. Appl. 6, 6 (2017)Google Scholar
  18. 18.
    Guzek, M., Kliazovich, D., Bouvry, P.: HEROS: energy-efficient load balancing for heterogeneous data centers. In: IEEE 8th International Conference on Cloud Computing (2015). Print ISSN: 2159-6182Google Scholar
  19. 19.
    Saha, S., Deogun, J., Xu, L.: Energy models driven green routing for data centers. In: 2012 IEEE Global Communications Conference, GLOBECOM, pp. 2529–2534 (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Prince Research Laboratory, ISITCom of Hammam SousseUniversity of SousseSousseTunisia

Personalised recommendations