Advertisement

Optimal Power Flow with Uncertain Renewable Energy Sources Using Flower Pollination Algorithm

  • Muhammad Abdullah
  • Nadeem JavaidEmail author
  • Inam Ullah Khan
  • Zahoor Ali Khan
  • Annas Chand
  • Noman Ahmad
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 926)

Abstract

Optimal power flow (OPF) problem has become more significant for operation and planning of electrical power systems because of the increasing energy demand. OPF is very important for system operators to fulfill the electricity demand of the consumers efficiently and for the reliable operation of the power system. The key objective in OPF is to reduce the total generating cost while assuring the system limitations. Due to environmental emission, depletion of fossil fuels and its higher prices, integration of renewable energy sources into the grid is essential. Classical OPF, which consider only thermal generators is a non-convex, non-linear optimization problem. However, incorporating the uncertain renewable sources adds complexity to the problem. A metaheuristic algorithm which solves the OPF problem with renewable energy sources is to be implemented on a modified IEEE 30-bus system.

References

  1. 1.
    Mohamed, A.-A.A., et al.: Optimal power flow using moth swarm algorithm. Electr. Power Syst. Res. 142, 190–206 (2017)CrossRefGoogle Scholar
  2. 2.
    Duman, S.: A modified moth swarm algorithm based on an arithmetic crossover for constrained optimization and optimal power flow problems. IEEE Access 6, 45394 (2018)CrossRefGoogle Scholar
  3. 3.
    Reddy, S.S.: Optimal power flow using hybrid differential evolution and harmony search algorithm. Int. J. Mach. Learn. Cybern., 1–15 (2018)Google Scholar
  4. 4.
    Attia, A.-F., El Sehiemy, R.A., Hasanien, H.M.: Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. Int. J. Electr. Power Energy Syst. 99, 331–343 (2018)CrossRefGoogle Scholar
  5. 5.
    Bai, W., Eke, I., Lee, K.Y.: An improved artificial bee colony optimization algorithm based on orthogonal learning for optimal power flow problem. Control Eng. Pract. 61, 163–172 (2017)CrossRefGoogle Scholar
  6. 6.
    Javaid, N., et al.: Energy efficient integration of renewable energy sources in the smart grid for demand side management. IEEE Access 6, 77077–77096 (2018)CrossRefGoogle Scholar
  7. 7.
    Javaid, N., et al.: An intelligent load management system with renewable energy integration for smart homes. IEEE Access 5, 13587–13600 (2017)CrossRefGoogle Scholar
  8. 8.
    Khan, M., et al.: Game theoretical demand response management and short-term load forecasting by knowledge based systems on the basis of priority index. Electronics 7(12), 431 (2018)CrossRefGoogle Scholar
  9. 9.
    Awais, M., et al.: Towards effective and efficient energy management of single home and a smart community exploiting heuristic optimization algorithms with critical peak and real-time pricing tariffs in smart grids. Energies 11(11), 3125 (2018)CrossRefGoogle Scholar
  10. 10.
    Ahmad, A., et al.: An optimized home energy management system with integrated renewable energy and storage resources. Energies 10(4), 549 (2017)CrossRefGoogle Scholar
  11. 11.
    Bouchekara, H.R., Abido, M.A., Chaib, A.E., et al.: Optimal power flow using the league championship algorithm: a case study of the Algerian power system. Energy Convers. Manage. 87, 58–70 (2014)CrossRefGoogle Scholar
  12. 12.
    Biswas, P.P., Suganthan, P.N., Amaratunga, G.A.: Optimal power flow solutions incorporating stochastic wind and solar power. Energy Convers. Manage. 148, 1194–1207 (2017)CrossRefGoogle Scholar
  13. 13.
    Roy, R., Jadhav, H.T.: Optimal power flow solution of power system incorporating stochastic wind power using Gbest guided artificial bee colony algorithm. Int. J. Electr. Power Energy Syst. 64, 562–578 (2015)CrossRefGoogle Scholar
  14. 14.
    Panda, A., Tripathy, M.: Optimal power flow solution of wind integrated power system using modified bacteria foraging algorithm. Int. J. Electr. Power Energy Syst. 54, 306–314 (2014)CrossRefGoogle Scholar
  15. 15.
    Panda, A., Tripathy, M.: Security constrained optimal power flow solution of wind-thermal generation system using modified bacteria foraging algorithm. Energy 93, 816–827 (2015)CrossRefGoogle Scholar
  16. 16.
    Shi, L., et al.: Optimal power flow solution incorporating wind power. IEEE Syst. J. 6(2), 233–241 (2012)CrossRefGoogle Scholar
  17. 17.
    Chang, T.P.: Investigation on frequency distribution of global radiation using different probability density functions. Int. J. Appl. Sci. Eng. 8(2), 99–107 (2010)Google Scholar
  18. 18.
    Reddy, S.S., Bijwe, P.R., Abhyankar, A.R.: Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period. IEEE Syst. J. 9(4), 1440–1451 (2015)CrossRefGoogle Scholar
  19. 19.
    Reddy, S.S.: Optimal scheduling of thermal-wind-solar power system with storage. Renewable Energy 101, 1357–1368 (2017)CrossRefGoogle Scholar
  20. 20.
    Sharma, H., Singh, J.: Run off river plant: status and prospects. Int. J. Innov. Technol. Exploring Eng. (IJITEE) 3(2) (2013)Google Scholar
  21. 21.
    Pandey, H.K., Dwivedi, S., Kumar, K.: Flood frequency analysis of Betwa river, Madhya Pradesh India. J. Geol. Soc. India 92(3), 286–290 (2018)CrossRefGoogle Scholar
  22. 22.
    Cabus, P.: River flow prediction through rainfall runoff modelling with a probability-distributed model (PDM) in Flanders, Belgium. Agric. Water Manage. 95(7), 859–868 (2008)CrossRefGoogle Scholar
  23. 23.
    Wijesinghe, A., Lai, L.L.: Small hydro power plant analysis and development. In: 2011 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT). IEEE (2011)Google Scholar
  24. 24.
    Yang, X.-S.: Flower pollination algorithm for global optimization. In: International Conference on Unconventional Computing and Natural Computation. Springer, Heidelberg (2012)Google Scholar
  25. 25.
    Yang, X.-S., Karamanoglu, M., He, X.: Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Abdelaziz, A.Y., Ali, E.S., Abd Elazim, S.M.: Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems. Energy 101, 506–518 (2016)CrossRefGoogle Scholar
  27. 27.
    Velamuri, S., Sreejith, S., Ponnambalam, P.: Static economic dispatch incorporating wind farm using flower pollination algorithm. Perspect. Sci. 8, 260–262 (2016)CrossRefGoogle Scholar
  28. 28.
    Huang, S.-J., et al.: Application of flower pollination algorithm for placement of distribution transformers in a low-voltage grid. In: 2015 IEEE International Conference on Industrial Technology (ICIT). IEEE (2015)Google Scholar
  29. 29.
    Abdelaziz, A.Y., Ali, E.S., Abd Elazim, S.M.: Flower pollination algorithm and loss sensitivity factors for optimal sizing and placement of capacitors in radial distribution systems. Int. J. Electr. Power Energy Syst. 78, 207–214 (2016)CrossRefGoogle Scholar
  30. 30.
    He, X., et al.: Global convergence analysis of the flower pollination algorithm: a discrete-time Markov chain approach. Procedia Comput. Sci. 108, 1354–1363 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Muhammad Abdullah
    • 1
  • Nadeem Javaid
    • 1
    Email author
  • Inam Ullah Khan
    • 2
  • Zahoor Ali Khan
    • 3
  • Annas Chand
    • 4
  • Noman Ahmad
    • 1
  1. 1.COMSATS University IslamabadIslamabadPakistan
  2. 2.COMSATS University IslamabadLahorePakistan
  3. 3.Computer Information ScienceHigher Colleges of TechnologyFujairahUAE
  4. 4.COMSATS University IslamabadAbbottabadPakistan

Personalised recommendations