Forecasting Crypto-Asset Price Using Influencer Tweets

  • Hirofumi YamamotoEmail author
  • Hiroki Sakaji
  • Hiroyasu Matsushima
  • Yuki Yamashita
  • Kyohei Osawa
  • Kiyoshi Izumi
  • Takashi Shimada
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 926)


Nowadays, crypto-asset is gaining immense interest in the field of finance. Bitcoin is a one such crypto-asset with a trading volume of more than 5 billion a day. On social networking services, there are people who have a great influence on social media users; these people are called influencers. In this study, we focus on crypto-asset influencers. We consider that influencer tweets may affect crypto-asset prices. In this research, we propose a method to predict whether bitcoin price will increase or decrease using influencer tweets. For this, we collect influencer tweets to extract features using natural language processing techniques; these features are used as input for machine learning methods, which also use bitcoin price data. The results of our experiment show that the influencer tweets affect crypto-asset prices.


Text mining Machine learning Crypto-asset 


  1. 1.
    Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. J. Comput. Sci. 2(1), 1–8 (2011)CrossRefGoogle Scholar
  2. 2.
    Breiman, L.: Random forest. Mach. Learn. 45(1), 5–32 (2001). Scholar
  3. 3.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. The MIT Press, Cambridge (1998)CrossRefGoogle Scholar
  4. 4.
    Hearst, M., Dumais, S., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998). Scholar
  5. 5.
    Ito, T., Sakaji, H., Izumi, K., Tsubouchi, K., Yamashita, T.: GINN: gradient interpretable neural networks for visualizing financial texts. Int. J. Data Sci. Anal. (2018).
  6. 6.
    Ito, T., Sakaji, H., Tsubouchi, K., Izumi, K., Yamashita, T.: Text-visualizing neural network model: understanding online financial textual data. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) (2018)Google Scholar
  7. 7.
    Kitamori, S., Sakai, H., Sakaji, H.: Extraction of sentences concerning business performance forecast and economic forecast from summaries of financial statements by deep learning. In: 2017 IEEE Symposium Series on Computational Intelligence, SSCI, pp. 1–7 (2017).,
  8. 8.
    Koppel, M., Shtrimberg, I.: Good news or bad news? Let the market decide, pp. 297–301. Springer, Dordrecht (2006)Google Scholar
  9. 9.
    Low, B.T., Chan, K., Choi, L.L., Chin, M.Y., Lay, S.L.: Semantic expectation-based causation knowledge extraction: a study on Hong Kong stock movement analysis. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD, pp. 114–123 (2001)Google Scholar
  10. 10.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)Google Scholar
  11. 11.
    Milea, V., Sharef, N.M., Almeida, R.J., Kaymak, U., Frasincar, F.: Prediction of the MSCI Euro index based on fuzzy grammar fragments extracted from European central bank statements. In: 2010 International Conference of Soft Computing and Pattern Recognition, pp. 231–236, December 2010.
  12. 12.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)Google Scholar
  13. 13.
    Sakai, H., Masuyama, S.: Extraction of cause information from newspaper articles concerning business performance. In: Proceedings of the 4th IFIP Conference on Artificial Intelligence Applications & Innovations, AIAI 2007, pp. 205–212 (2007)Google Scholar
  14. 14.
    Sakaji, H., Murono, R., Sakai, H., Bennett, J., Izumi, K.: Discovery of rare causal knowledge from financial statement summaries. In: The 2017 IEEE Symposium on Computational Intelligence for Financial Engineering and Economics, CIFEr, pp. 602–608 (2017)Google Scholar
  15. 15.
    Sakaji, H., Sakai, H., Masuyama, S.: Automatic extraction of basis expressions that indicate economic trends. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD, pp. 977–984 (2008)Google Scholar
  16. 16.
    Schumaker, R.P., Chen, H.: Textual analysis of stock market prediction using breaking financial news: the AZFin text system. ACM Trans. Inf. Syst. 27(2), 12:1–12:19 (2009). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hirofumi Yamamoto
    • 1
    Email author
  • Hiroki Sakaji
    • 1
  • Hiroyasu Matsushima
    • 1
  • Yuki Yamashita
    • 2
  • Kyohei Osawa
    • 2
  • Kiyoshi Izumi
    • 1
  • Takashi Shimada
    • 1
  1. 1.The University of TokyoBunkyo-kuJapan
  2. 2.Information Services International-Dentsu, Ltd.Minato-kuJapan

Personalised recommendations