Advertisement

Minimizing Daily Electricity Cost Using Bird Chase Scheme with Electricity Management Controller in a Smart Home

  • Raza Abid Abbasi
  • Nadeem JavaidEmail author
  • Shujat ur Rehman
  • Amanulla
  • Sajjad Khan
  • Hafiz Muhammad Faisal
  • Sajawal Ur Rehman Khan
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 926)

Abstract

Integration of Demand Side Management (DSM) strategies within Smart Grid (SG) helps the utilities to mange and control the power consumer load to meet the power demand. Schemes adapted by DSM are used for reducing the load on utilities at peak time, which is achieved by managing the user appliances according to the changes in load on utility and individual smart home. This work is focused on hourly scheduling of the appliances being used in a smart home targeting the daily electricity cost minimization. A new heuristic scheme is introduced for hourly appliances scheduling on user side in this paper. The proposed scheme works at the electricity management controller level, installed in a smart home, within a SG infrastructure. The proposed scheme results are compared with other heuristic schemes as well. From extensive simulations it is depicted that proposed scheme performs best and outperforms other schemes in term of electricity cost minimization.

Keywords

STLF Smart grid Xgboost Machine learning 

References

  1. 1.
    U.S. Energy Information Administration, Annual Energy Outlook 2018, pp. 121, 122, Residential and commercial energy consumption grows gradually from 2017 to 2050. https://www.eia.gov/outlooks/aeo/pdf/AEO2018.pdf. Accessed Oct 2018
  2. 2.
    Luo, F., Ranzi, G., Wan, C., Xu, Z., Dong, Z.Y.: A multi-stage home energy management system with residential photovoltaic penetration. IEEE Trans. Ind. Inform. 15(1), 116–126 (2018)CrossRefGoogle Scholar
  3. 3.
    Gungor, V.C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., Hancke, G.P.: Smart grid and smart homes: key players and pilot projects. IEEE Ind. Electron. Mag. 6(4), 18–34 (2012)CrossRefGoogle Scholar
  4. 4.
    Huang, H., Cai, Y., Xu, H., Yu, H.: A multi-agent minority-game- based demand-response management of smart buildings towards peak load reduction. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 36(4), 573–585 (2017)CrossRefGoogle Scholar
  5. 5.
    Ruelens, F., Claessens, B.J., Vandael, S., De Schutter, B., Babuška, R., Belmans, R.: Residential demand response of thermostatically controlled loads using batch reinforcement learning. IEEE Trans. Smart Grid 8(5), 2149–2159 (2017)CrossRefGoogle Scholar
  6. 6.
    Pourmousavi, S.A., Patrick, S.N., Nehrir, M.H.: Real-time demand response through aggregate electric water heaters for load shifting and balancing wind generation. IEEE Trans. Smart Grid 5(2), 769–778 (2014)CrossRefGoogle Scholar
  7. 7.
    Sakurama, K., Miura, M.: Communication-based decentralized demand response for smart microgrids. IEEE Trans. Ind. Electron. 64(6), 5192–5202 (2017)CrossRefGoogle Scholar
  8. 8.
    Jindal, A., Dua, A., Kaur, K., Singh, M., Kumar, N., Mishra, S.: Decision tree and SVM-based data analytics for theft detection in smart grid. IEEE Trans. Ind. Informat. 12(3), 1005–1016 (2016)CrossRefGoogle Scholar
  9. 9.
    Mirowski, P., Chen, S., Kam Ho, T., Yu, C.N.: Demand forecasting in smart grids. Bell Labs Tech. J. 18(4), 135–158 (2014)CrossRefGoogle Scholar
  10. 10.
    Wu, Z., Zhao, T., He, L., Shen, X.: Smart grid meter analytics for revenue protection. In: Proceedings of the IEEE International Conference on Power System Technology, pp. 782–787 (2014)Google Scholar
  11. 11.
    Jindal, A., Kumar, N., Singh, M.: A data analytical approach using support vector machine for demand response management in smart grid. In: 2016 IEEE Power and Energy Society General Meeting (PESGM) 17–21 July, pp. 1–5 (2016)Google Scholar
  12. 12.
    Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.-M.: Optimized clusters for disaggregated electricity load forecasting. REVSTAT 8, 105–124 (2010)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Alzate, C., Sinn, M.: Improved electricity load forecasting via kernel spectral clustering of smart meters. In IEEE 13th International Conference on Data Mining (ICDM), pp. 943–948 (2013)Google Scholar
  14. 14.
    Wijaya, T.K., Vasirani, M., Humeau, S., Aberer, K.: Cluster-based aggregate forecasting for residential electricity demand using smart meter data. In: IEEE International Conference on Big Data (Big Data)Google Scholar
  15. 15.
    Jindal, A., Singh, M., Kumar, N.: Consumption-aware data analytical demand response scheme for peak load reduction in smart grid. IEEE Trans. Ind. Electron. 65(11), 8993–9004 (2018)CrossRefGoogle Scholar
  16. 16.
    Moon, J., Kim, K.-H., Kim, Y., Hwang, E.: A short-term electric load forecasting scheme using 2-stage predictive analytics. In: 2018 IEEE International Conference on Big Data and Smart Computing (2018)Google Scholar
  17. 17.
    Keles, D., Scelle, J., Paraschiv, F., Fichtner, W.: Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks. Appl. Energy 162, 218–230 (2016)CrossRefGoogle Scholar
  18. 18.
    Erol-Kantarci, M., Mouftah, H.T.: Energy-efficient information and communication infrastructures in the smart grid: a survey on interactions and open issues. IEEE Commun. Surv. Tutor. 17(1), 179–197 (2015)CrossRefGoogle Scholar
  19. 19.
    Huang, D., Zareipour, H., Rosehart, W.D., Amjady, N.: Data mining for electricity price classification and the application to demand-side management. IEEE Trans. Smart Grid 3(2), 808–817 (2012)CrossRefGoogle Scholar
  20. 20.
    Fleury, A., Vacher, M., Noury, N.: SVM-based multimodal classification of activities of daily living in health smart homes: sensors, algorithms, and first experimental results. IEEE Trans. Inform. Technol. Biomed. 14(2), 274–283 (2010)CrossRefGoogle Scholar
  21. 21.
    Zhu, Z., Tang, J., Lambotharan, S., Chin, W.H., Fan, Z.: An integer linear programming based optimization for home demand-side management in smart grid. In: 2012 IEEE PES Innovative Smart Grid Technologies (ISGT) (2012)Google Scholar
  22. 22.
    Maa, K., Hua, S., Yanga, J., Xua, X., Guanb, X.: Appliances scheduling via cooperative multi-swarm PSO underday-ahead prices and photovoltaic generation. Appl. Soft Comput. 62, 504–513 (2018)CrossRefGoogle Scholar
  23. 23.
    Bazydło, G., Wermiński, S.: Demand side management through home area network systems. Electr. Power Eng. Syst. 97, 174–185 (2018)CrossRefGoogle Scholar
  24. 24.
    Hong, S.H., Yu, M., Huang, X.: A real-time demand response algorithm for heterogeneous devices in buildings and homes. Energy 80, 123–132 (2015)CrossRefGoogle Scholar
  25. 25.
    Logenthiran, T., Srinivasan, D., Shun, T.Z.: Demand side management in smart grid using heuristic optimization. IEEE Trans. Smart Grid 3, 1244–1252 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Raza Abid Abbasi
    • 1
  • Nadeem Javaid
    • 1
    Email author
  • Shujat ur Rehman
    • 2
  • Amanulla
    • 2
  • Sajjad Khan
    • 1
  • Hafiz Muhammad Faisal
    • 1
  • Sajawal Ur Rehman Khan
    • 1
  1. 1.COMSATS Institute of Information TechnologyIslamabadPakistan
  2. 2.Quaid-i-Azam University IslamabadIslamabadPakistan

Personalised recommendations