Advertisement

Estimation of Tags Using Various Data for Online Videos

  • Hiroki SakajiEmail author
  • Akio Kobayashi
  • Masaki Kohana
  • Yasunao Takano
  • Kiyoshi Izumi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 926)

Abstract

We propose a method for estimating new tags to enrich folksonomy on video sharing sites using various video information. Folksonomy is a process by which users tag videos to facilitate searches. One such website is Nico Nico Douga, although users of the site cannot post more than 12 tags to a video. Consequently, although some important tags will be posted, others might be missing. We present a method for acquiring some of these missing tags by choosing new tags. The method uses comments, tags, titles, descriptions, and thumbnails to estimate new tags. Using these data, we develop various algorithms, including neural networks, word embeddings, and K-means. Our method indicated high performance in experimental results.

References

  1. 1.
    Wu, B., Zhong, E., Tan, B., Horner, A., Yang, Q.: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, pp. 721–730. ACM, New York (2014).  https://doi.org/10.1145/2623330.2623625
  2. 2.
    Lv, G., Xu, T., Chen, E., Liu, Q., Zheng, Y.: The 30th AAAI Conference on Artificial Intelligence (2016)Google Scholar
  3. 3.
    Sakaji, H., Kohana, M., Kobayashi, A., Sakai, H.: 2016 19th International Conference on Network-Based Information Systems (NBiS), pp. 550–553. IEEE (2016)Google Scholar
  4. 4.
    Ikeda, A., Kobayashi, A., Sakaji, H., Masuyama, S.: 18th International Conference on Network-Based Information Systems (NBiS), pp. 673–678 (2015).  https://doi.org/10.1109/NBiS.2015.101
  5. 5.
    Lin, X., Ito, E., Hirokawa, S.: 13th International Conference on Computer and Information Science (ICIS), pp. 163–166 (2014).  https://doi.org/10.1109/ICIS.2014.6912126
  6. 6.
    Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: European Semantic Web Conference, pp. 411–426. Springer (2006)Google Scholar
  7. 7.
    Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: European Conference on Principles of Data Mining and Knowledge Discovery, pp. 506–514. Springer (2007)Google Scholar
  8. 8.
    Gemmell, J., Schimoler, T., Ramezani, M., Mobasher, B.: Proceedings of the 7th International Conference on Intelligent Techniques for Web Personalization & Recommender Systems, vol. 528, pp. 69–80. CEUR-WS.org (2009)Google Scholar
  9. 9.
    Gemmell, J., Schimoler, T., Mobasher, B., Burke, R.: International Conference on User Modeling, Adaptation, and Personalization, pp. 111–122. Springer (2011)Google Scholar
  10. 10.
    Budura, A., Michel, S., Cudré-Mauroux, P., Aberer, K.: European Semantic Web Conference, pp. 608–622. Springer (2009)Google Scholar
  11. 11.
    Krestel, R., Fankhauser, P., Nejdl, W.: Proceedings of the Third ACM Conference on Recommender Systems, pp. 61–68. ACM (2009)Google Scholar
  12. 12.
    Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, vol. 1, pp. 248–256. Association for Computational Linguistics (2009)Google Scholar
  13. 13.
    Kowald, D.: Modeling cognitive processes in social tagging to improve tag recommendations (2018)Google Scholar
  14. 14.
    Sakaji, H., Kohana, M., Akio, K., Sakai, H.: Int. J. Grid Utility Comput. (2018). https://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijguc
  15. 15.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience, New York (1991)CrossRefGoogle Scholar
  16. 16.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)Google Scholar
  17. 17.
    Simonyan, K., Zisserman, A.: arXiv preprint arXiv:1409.1556 (2014)
  18. 18.
    He, K., Zhang, X., Ren, S., Sun, J.: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  19. 19.
    Sculley, D.: Proceedings of the 19th International Conference on World Wide Web, pp. 1177–1178. ACM (2010)Google Scholar
  20. 20.
    Sakaji, H., Ishibuchi, J., Sakai, H.: Int. J. Space-Based Situated Comput. 6(3), 165 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hiroki Sakaji
    • 1
    Email author
  • Akio Kobayashi
    • 2
  • Masaki Kohana
    • 3
  • Yasunao Takano
    • 4
  • Kiyoshi Izumi
    • 1
  1. 1.The University of TokyoBunkyo-kuJapan
  2. 2.RIKEN AIP CenterChuo-kuJapan
  3. 3.Ibaraki UniversityHitachiJapan
  4. 4.Aoyama Gakuin UniversitySagamihara-shiJapan

Personalised recommendations